- 8 (495) 7487600
- 8 (495) 7487600
- 8 (925) 5552040
- 8 (925) 5552040
- Напишите нам
- Обратный звонок
Интернет магазин оборудования насосной, отопительной и водонагревательной техники №1
Трубчатый нагреватель двигателя стирлинга. Котел двигатель стирлинга
Трубчатые нагреватели в Стирлингах, как от них отказаться?
В таблице (статья Из какого металла должен быть сделан горячий цилиндр двигателя Стирлинга) я умышлено поставил такой экзотический металл, как Галлий (Ga). Интерес к нему будет возрастать с возможностью применения данного элемента как переносчика концентрированного тепла от камеры сгорания к горячему цилиндру двигателя Стирлинга. Галлий находится в жидком состоянии начиная с 30 градусов по Цельсию и заканчивая 2230 градусами. Это моё личное предчувствие потенциального использования. Теплопроводность данного металла намного выше теплопроводности атмосферы, в которой сгорает топливо. В данном варианте можно отказаться от трубчатой системы увеличения площади горячего цилиндра. Смотрите насадку на рисунке ниже.
Трубчатые нагреватели в двигателе СтирлингаПодводить концентрированное тепло можно не только снаружи, но и сразу внутрь цилиндра. Таким образом мы можем плавно регулировать максимально подводимую температуру. Такое распределение позволит нам сделать одну эффективную камеру сгорания и несколько цилиндров, расположенных на больших расстояниях, например рядная четвёрка, шестёрка и т.п. Есть возможность смены приёмника тепла для адаптации к различным видам топлива, при этом не нужно будет видоизменять сам двигатель Стирлинга. Это позволит сделать двигатель действительно универсальным и всеядным.
Есть и отрицательные стороны. Кроме указанного выше насоса, к недостаткам нужно отнести температуру плавления в 30 градусов Цельсия. Ниже этого порога Галлий кристаллизуется, и что ещё хуже, при затвердевании он увеличивается в объёме и прирост этого объёма составляет 3,2%. В стационарно расположенных установках на основе двигателей Стирлинга можно конечно же предусмотреть автоподогрев Галлия и удержания его температуры выше температуры кристаллизации. В противном же случае выход из строя такого теплоподатчика неизбежен.
Есть возможность сделать сплав Галлия с Индием, и тем самым уменьшить температуру плавления до 16 градусов Цельсия. Но это не даст такого ощутимого результата во многих применениях двигателя Стирлинга. И опять же должен будет предусмотрен подогрев в промежутки простоя двигателя.
domolov.ru
Новинка от Viessmann – мини-ТЭЦ на двигателе Стирлинга.
Оригинал взят уНа международной выставке ISH-2009 во Франкфурте компания Viessmann представила ряд последних разработок, среди которых можно выделить новое перспективное направление – мини-ТЭЦ на двигателе Стирлинга.
Этот котёл представляет собой мини-ТЭЦ для одновременной выработки тепла и электроэнергии, что более эффективно, чем два отдельных устройства для выработки тепловой и электрической энергии.
Двигатель Стирлинга может работать на нескольких видах топлива – газ, нефть, дерево, солнечная энергия. С помощью двигателя Стирлинга и линейного генератора энергия, полученная из газа, преобразуется в тепло и электричество. Вся система полностью герметична, благодаря чем создаются условия для низких эксплуатационных расходов.
В условиях сегодняшнего дня – кризис, глобальное потепление, дефицит современных энергоносителей и т.д. – именно такие комплексные решения являются наиболее интересными и перспективными.
Ориентировочное начало продаж нового котла Viessmann в России – 2010 год.
Справка о выставке:
ISH 2009 —крупнейшая выставка строительных и энергетических технологий, санитарного оборудования, кондиционирования воздуха и вентиляции.
Справка о компании:
Промышленная группа Viessmann - крупнейший производитель оборудования для систем теплоснабжения мирового уровня. Компания была основана в 1917 году. Годовой оборот компании Viessmann составляет 1,4 млрд. евро. Компания Viessmann владеет 12 заводами в Германии, Франции, Канаде, Польше и Китае. Во всем мире открыты 120 торговых филиалов компании. Таким образом, компания Viessmann является крупным игроком на мировом рынке отопительной техники, где 60% всего оборота предприятия приходится на экспорт.
Двигатель Стирлинга
Двигатель Стирлинга - двигатель внешнего сгорания и поэтому значительно отличается от традиционных двигателей внутреннего сгорания, где топливо сжигается внутри установки. Тепло поставляется двигателю Стирлинга внешним источником, таким как горючий газ (burning gas), и это заставляет рабочую жидкость, например гелий, расширяться и двигает один из двух поршней внутрь цилиндра. Этот поршень называется рабочим. Второй поршень, известный как вытеснитель (displacer), затем перемещает газ в холодную зону, где он снова сжимается рабочим поршнем. Вытеснитель затем перемещает сжатый газ или воздух в горячую область и цикл продолжается.
Двигатель Стирлинга имеет меньше подвижных частей, нежели обычные двигатели и нет никаких клапанов, кулачков, топливных инжекторов или искровых систем зажигания. Поэтому он несколько тише обычных двигателей, особенность, являющаяся результатом скорее непрерывного, нежели чем импульсного сгорания топлива. Двигатели Стирлинга также требуют минимального обслуживания и эмиссии частиц, окиси азота и не сожженного углеводорода довольно малы. Эффективность подобных машин потенциально больше аналогичных установок внутреннего сгорания или газовых турбин.
Одно из новых направлений использования технологии — применение в микро-когенерационных котлах. Этот тип котлов требует малых двигателей с мощностью от 0.2 до 4 кВт*э. Газовые турбины и другие газовые двигатели не подходят для столь малой мощности (хотя минимальная мощность для двигателя с искровым зажиганием — 3 кВт), тогда как двигатель Стирлинга предлагает хорошую альтернативу.
Преимущества двигателя Стирлинга:
- менее подвижные части с малым трением, нет потребности в дополнительном котле, нет камеры внутреннего сгорания;
- высокая теоретическая эффективность;
- большие возможности массового производства;
- внешнее сгорание обеспечивает крайне чистый выхлоп и дает возможность контролировать выходную электрическую мощность двигателя уменьшением температуры горячей стороны. То есть имеется возможность управления производством электроэнергии без изменения параметров требуемого тепла.
Двигатели Стирлинга малой мощностью уже имеются на рынке или в разработке. Электрическая эффективность их еще не очень велика: от 10% (для 350 Вт двигателя), 12.5% (для 800 Вт) до 25% (для 3 000 Вт), в ближайшем будущем возможен 25% электрический КПД с общим КПД в 90%.
Таблица №1: Преимущества и недостатки двигателя Стирлинга
Мощность единичной машины | — |
Общий КПД | — |
Преимущества | Недостатки |
Технические преимущества: Большой опыт в области высоких мощностей;Меньше подвижных частей с меньшим трением;Нет внутренней камеры сгорания;Высокая теоретическая эффективность;Возможности массового производства. Преимущества микро-когенерации: Нет необходимости в дополнительном котле;Производство электроэнергии не зависит от производства тепла; Очень низкий уровень эмиссий;Легкость контроля;Солидный ресурс.Возможность производства взаимозаменяемых компонентов. | Малый опыт в области низких мощностей; Скудная эффективность существующих машин; Первые машины крайне дороги. |
Двигатель Стирлинга - Журнал АКВА-ТЕРМ
Очень тесно к современной тенденции использования возобновляемых источников энергии (ВИЭ) примыкает возможность реализации этой энергии в полезных целях с помощью двигателя Стирлинга. Данный двигатель представляет собой одну из вариаций двигателя внешнего сгорания и в силу этой особенности может быть легко переведен на работу от ВИЭ без вреда для экологии.
Подписаться на статьи можно на главной странице сайта.
Это изобретение имеет довольно давнюю историю. Шотландский священник Роберт Стирлинг запатентовал двигатель, который с тех пор носит его имя, еще в 1816 г., однако двигатели аналогичного принципа действия были известны и раньше – с конца XVII в. По сути, Роберт Стирлинг лишь усовершенствовал их, сделав конструкцию более энергоэффективной.
Двигатель Стирлинга – тепловая машина, в которой жидкое или газообразное рабочее тело расширяется и сужается в замкнутом объеме вследствие периодического нагревания и охлаждения и совершает работу за счет притока тепловой энергии из внешней среды. Та особенность, что энергия подводится к рабочему телу из внешней среды, создает возможность для работы двигателя Стирлинга не только на энергии, выделяемой при сжигании топлива, но и от любого источника тепла, в том числе от ВИЭ.
Простейший двигатель Стирлинга представляет собой герметичный цилиндр, заполненный газом или жидкостью, внутри которого размещаются вытеснительный и рабочий поршни. Поршень-вытеснитель также имеет форму цилиндра, диаметр которого меньше внутреннего диаметра большего цилиндра настолько, что между их стенками остается небольшой зазор, по которому может перетекать газ или жидкость, заполняющая цилиндр. Рабочий поршень размещается за вытеснительным и толкает маховик, с которым связаны оба поршня по принципу кривошипно-шатунного механизма. Внешний цилиндр двигателя подогревается с одного конца. При этом рабочее тело (газ, жидкость) нагревается практически при постоянном объеме, затем рабочее тело расширяется при постоянной температуре, совершая работу и толкая рабочий поршень. Рабочее тело перемещается поршнем-вытеснителем в холодную зону, где происходит охлаждение при почти постоянном объеме.
Движение рабочего поршня сдвинуто на 90° относительно движения поршня-вытеснителя. В зависимости от знака этого сдвига машина может быть двигателем или тепловым насосом. При нулевом сдвиге машина не производит никакой работы (кроме потерь на трение).
Если физико-химические характеристики рабочего тела и цилиндра подобраны так, что в процессе цикла «расширение-сжатие» материал рабочего тела проходит через фазовый переход, работа двигателя может быть весьма эффективной, но потребует высокого давления внутри цилиндра. Стирлинг усовершенствовал двигатель за счет введения в него так называемого «эконома» – теплообменника-рекуператора или регенератора, который удерживает тепло в теплой части двигателя, в то время как рабочее тело охлаждается. Тем самым рекуператор (регенератор, эконом) повышает производительность двигателя. Рекуператор двигателя Стирлинга может представлять собой камеру, заполненную проволокой, гранулами, гофрированной фольгой (гофры идут вдоль направления потока газа или жидкости). Газ или жидкость рабочего тела, проходя через наполнитель рекуператора в одну сторону, отдает (или приобретает) тепло, а при движении в другую сторону отбирает (или отдает) его.
По термодинамической эффективности идеальный цикл Стирлинга не уступает циклу Карно, состоит из четырех фаз и разделен двумя переходными фазами: нагрев, расширение, переход к источнику холода, охлаждение, сжатие и переход к источнику тепла. При переходе от теплого источника к холодному происходит расширение и сжатие газа, находящегося в цилиндре. При этом изменяется давление, за счет чего можно получить полезную работу. Нагрев и охлаждение рабочего тела (участки 4 и 2) производится рекуператором. В идеале количество тепла, отдаваемое и отбираемое рекуператором, одинаково. Полезная работа производится только за счет изотерм и зависит от разницы температур нагревателя и охладителя.
Рекуператор может быть внешним, а может размещаться на поршне-вытеснителе, что делает габаритные размеры и вес двигателя меньше. Роль рекуператора выполняет также зазор между вытеснителем и стенками цилиндра. При большой длине цилиндра надобность в дополнительном рекуператоре вообще исчезает, но появляются значительные потери на преодоление вязкости рабочего тела.
В зависимости от особенностей конструкции, в том числе от размещения рекуператора, различают несколько типов двигателя Стирлинга.
Типы двигателя Стирлинга
Традиционно выделяют альфа-, бета- и гамма-Стирлинг.
Альфа-Стирлинг содержит два раздельных силовых поршня (горячий и холодный) в раздельных цилиндрах. Цилиндр с горячим поршнем находится в теплообменнике с более высокой температурой, в то время как цилиндр с холодным поршнем находится в более холодном теплообменнике. У данного типа двигателя отношение мощности к объему достаточно велико, но высокая температура «горячего» поршня создает определенные технические проблемы.
В альфа-Стирлинге рекуператор может быть только внешним. Он монтируется последовательно с теплообменником, в котором происходит нагрев рабочего тела, со стороны холодного поршня.
Работа бета-Стирлинга описана выше как пример наиболее простого двигателя Стирлинга. Цилиндр всего один, горячий с одного конца и холодный с другого. Внутри цилиндра движутся поршень (с которого снимается мощность) и «вытеснитель», изменяющий объем горячей полости. Газ перекачивается из холодной части цилиндра в горячую через регенератор. Регенератор может быть внешним, как часть теплообменника, или может быть совмещен с поршнем-вытеснителем. В конструкцию гамма-Стирлинга входят два цилиндра, а также поршень и «вытеснитель». В холодном цилиндре движется поршень, с которого снимается мощность. Во втором цилиндре, горячем с одного конца и холодным с другого, движется поршень-вытеснитель. Регенератор может быть внешним, в этом случае он соединяет горячую часть второго цилиндра с холодной и одновременно с первым (холодным) цилиндром. Внутренний регенератор является частью вытеснителя.
Существуют и другие разновидности двигателя Стирлинга. Одним из самых интересных современных решений является роторный двигатель Мухина – наиболее компактный в ряду двигателей Стирлинга. Одним из его достоинств является отказ от кривошипно-шатунного механизма.
Преимущества и недостатки
Двигатель Стирлинга в XIX в. создавался и рассматривался как взрывобезопасная альтернатива паровым двигателям. Он действительно безопасен в этом отношении, но это не единственное его преимущество.
Как все двигатели внешнего сгорания, двигатель Стирлинга может работать от любого перепада температур. Это определяет и возможность создания двигателей Стирлинга, совсем не наносящих при работе вреда экологии. Его конструкция проста, значительно проще двигателей внутреннего сгорания, предусматривающих газораспределительные системы для сжигания топлива, системы пуска двигателя и др. Двигатель Стирлинга при работе производит очень мало шума, значительно меньше, чем любые двигатели внутреннего сгорания. Безаварийный ресурс двигателя очень высок, этому способствует простота конструкции и отсутствие «уязвимых» узлов, которые, например, могут засоряться при сжигании топлива (в роторном двигателе Стирлинга, как говорилось выше, отсутствует даже кривошипно-шатунный механизм). Наконец, двигатель Стирлинга характеризуется достаточно высоким КПД.
Несмотря на указанные преимущества, двигатель Стирлинга не получил такого широкого распространения, как например, газо-поршневые или газо-турбинные двигатели внутреннего сгорания. Его недостатки перевешивали до настоящего времени вроде бы очевидные преимущества. Основным из недостатков двигателей Стирлинга считается высокая материалоемкость производства машин необходимой мощности. Рабочее тело двигателя Стирлинга необходимо охлаждать, что приводит к существенному увеличению массы и габаритных размеров установки за счет увеличенных радиаторов. Достижение характеристик двигателя уровня двигателей внутреннего сгорания требует высокого давления (свыше 100 атм) в цилиндре. Однако в последнее время, когда большое внимание уделяется экологическим характеристикам оборудования, применение двигателей Стирлинга может значительно расшириться, причем в различных сферах.
Применение и перспективы
В настоящее время рядом зарубежных фирм (Philips, STM Inc., Daimler Benz, Solo, United Stirling) начато производство двигателей Стирлинга, технические характеристики которых уже сейчас превосходят ДВС и газотурбинные установки. Эти двигатели имеют эффективный КПД (до 45 %), удельную массу от 3,8 до 1,2 кг/кВт, ресурс до 40 тыс. ч и мощность от 3 до 1200 кВт.
С 60-х гг. прошлого века двигатели Стирлинга начали применять на подводных лодках. Пионером на этом направлении выступила Швеция. В настоящее время шведские кораблестроители уже отработали технологию оснащения этими двигателями подводных лодок путем врезания дополнительного отсека, в котором и размещается новая двигательная установка. Двигатели Стирлинга позволяют подводным лодкам находиться под водой без всплытия до 20 суток. Подобные двигатели установлены также в новейших японских подводных лодках.
Одно из важнейших и самых перспективных применений двигателей Стирлинга – выработка электроэнергии. В данном случае большое значение имеет универсальность этих двигателей в отношении источника энергии и возможность работать при перепадах температур в таких диапазонах, где двигатели внутреннего сгорания применяться не могут. В частности, рассматриваются варианты применения двигателей Стирлинга для выработки электроэнергии в космосе. Такой двигатель, работающий на радиоактивных изотопах, разработан в NASA. Большие надежды возлагаются на использование двигателей Стирлинга для преобразования солнечной энергии в электрическую. В этой установке солнечной электростанции двигатель Стирлинга устанавливается в фокусе параболического зеркала таким образом, чтобы отраженные лучи солнца постоянно фокусировались на зоне нагрева. Параболический отражатель управляется по двум координатам при слежении за солнцем. Зеркала отражают около 92 % падающего на них солнечного излучения. В качестве рабочего тела для таких двигателей Стирлинга используется водород или гелий. Эффективность выработки электроэнергии на этих установках (Sandia) достигает 31,25 %.
Компания Stirling Solar Energy строит в Калифорнии крупнейшую в мире солнечную электростанцию, представляющую собой батарею из параболических солнечных установок, оснащенных двигателями Стирлинга. Выпускаются также и небольшие солнечные электростанции с двигателями Стирлинга, которыми могут пользоваться даже туристы. Фирмой Alisson разработан и построен космический вариант солнечной установки с двигателем Стирлинга мощностью 5 кВт (КПД 37,5 %). В качестве источника теплоты используется параболический лепестковый концентратор диаметром 5,8 м, создающий в приемнике температуру 947 К. В ловушке приемника излучения устанавливается тепловой аккумулятор, отдающий тепло фазового превращения при постоянной температуре на теневых участках орбиты полета. Такая установка долгое время работала на одном из искусственных спутников Земли типа Gemini. В России РКК «Энергия», РНЦ им. Келдыша разрабатывали солнечную энергетическую установку для МКС «Альфа» на основе ДС мощностью 10 кВт и 36-лепесткового солнечного концентратора диаметром 10 м. Двигатель Стирлинга был создан и испытан на одном из предприятий Санкт-Петербурга в 2001 г.
Просматриваются интересные перспективы применения двигателя Стирлинга в тепловых насосах. Обычно в состав теплонасосной установки включается циркуляционный насос, который перекачивает теплоноситель по контуру, имеющему значительную протяженность. Агрегат, совмещающий двигатель Стирлинга и тепловой насос Стирлинга («стирлинг-стирлинг»), может изменить ситуацию. Двигатель Стирлинга отдает в систему отопления бросовое тепло от «холодного» цилиндра, а полученная механическая энергия используется для подкачки дополнительного тепла, которое забирается из окружающей среды. В теплонасосе «стирлинг-стирлинг» совершенно отсутствуют рабочие поршни. Перепады давления, возникающие в двигателе, применяются непосредственно для перекачки тепла тепловым насосом. Внутреннее пространство агрегата герметично и позволяет использовать рабочее тело под очень высоким давлением. Согласно проведенным расчетам тепловой насос «стирлинг-стирлинг» в идеале должен на каждую калорию сожженного газа добавлять еще 3–10 кал из ВИЭ. При испытаниях эта величина оказалась меньше, и пока опыты по использованию таких устройств прекращены.
Поскольку двигатели Стирлинга могут применяться для превращения в электроэнергию любого вида теплоты, для России значительный интерес представляет возможность серийного производства электрогенераторов средней мощности (от 3 до 500 кВт) с двигателями Стирлинга, работающими на местных видах топлив, в том числе и на биомассе. В данном случае в качестве местного топлива могут использоваться торф, уголь, сланцы, отходы сельского хозяйства и лесоперерабатывающей промышленности и др.
В настоящее время рядом компаний (Philips, STM Inc., Daimler Benz, Solo, United Stirling) начато производство двигателей Стирлинга, технические характеристики которых превосходят двигатели внутреннего сгорания и газотурбинные установки. Эти двигатели характеризуются КПД до 45 %, удельной массой от 3,8 до 1,2 кг/кВт, рабочим ресурсом до 40 тыс. ч и мощностью от 3 до 1200 кВт.
Журнал "Аква-Терм" №3 (67), 2012
Опубликовано: 28 сентября 2012 г.
вернуться назад
Читайте так же:
aqua-therm.ru
Тепловая машина Двигатель Стирлинга | Синтезгаз
Тепловая машина двигатель Стирлинга
Двигатель Стирлинга — тепловая машина, в которой жидкое или газообразное рабочее тело движется в замкнутом объёме, разновидность двигателя внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменения объёма рабочего тела.
Данный тип двигателей изобретен в девятнадцатом веке. Они прошли стадию подъема, затем были забыты, однако пережили паровые двигатели, двигатели внутреннего сгорания и снова возродились в двадцатом веке. Сегодня над их созданием трудятся многие инженеры и любители.
Стоит отметить, что универсальной методики расчета Стирлинг-машин не существует до сих пор. Львиная доля технических решений и методик расчета при создании опытных образцов двигателей Стирлинга автоматически становится «ноу-хау» компаний-разработчиков и тщательно скрывается. Двигатели Стирлинга не встретишь в свободной продаже, как газонокосилки или автономные генераторы. При этом «Стирлинги» используются в качестве энергоустановок на космических спутниках, применяются как маршевые двигатели на современных подводных лодках.
Мембранный Двигатель Стирлинга для солнечных установок
Стирлинг-машины с одинаковым успехом можно «вмонтировать» и в триммер для стрижки газонов, и в марсоход. В конструкции двигателя нет клапанов, распределительных валов, отсутствует система зажигания в ее привычной форме, нет стартера! Некоторые конструкции обладают эффектом самозапуска. Для работы годится любой источник тепла: энергия солнца, навоз, сено, дрова, уголь, нефть, газ, ядерный реактор — подойдет все! И при данной «всеядности» коэффициент полезного действия «Стирлингов» не уступает показателям двигателей внутреннего сгорания. Но и это не все. Стирлинг-машины обратимы. Т.е. подводя тепловую энергию, получаем механическую, раскручивая маховик двигателя вырабатываем холод.
Двигатель Стирлинга зависит только от внешнего поступления тепла. Что это тепло поставляет принципиального значения не имеет. Поэтому двигатель Стирлинга являеться идеальным кандидатом для перевода солнечного излучения в механическую энергию:
1. В двигателе Стирлинга постоянное количество рабочего газа (гелий или водород) постоянно нагреваеться и охлаждаеться.
2. Через расширение при нагревании и сжатии при охлаждении, рабочий газ приводит в движение два поршня, каждый из которых прикреплен к валу — таким образом передаеться энергия.
3. Эфективность двигателя Стирлинга растет при росте температуры, поэтому он являеться идеальной комбинацией для производства энергии через солнечный коллектор.
4. Здесь нет внутреннего сгорания, поэтому установка Стирлинга работает почти бесшумно.
5. Потенциальный жизненный цикл двигателя Стирлинга являеться очень длительным, так как здесь нет внутренного износа из-за горения топлива.
Можно запасать с его помощью энергию, используя в качестве источника тепла теплоаккумуляторы на расплавах солей. Такие аккумуляторы превосходят по запасу энергии химические аккумуляторы и дешевле их. Используя для регулировки мощности изменение фазного угла между поршнями, можно аккумулировать механическую энергию, тормозя двигателем. В этом случае двигатель превращается в тепловой насос.
Плюсы стирлингов
- КПД двигателя Стирлинга может достигать 65-70% КПД от цикла Карно при современном уровне проектирования и технологии изготовления. Кроме того крутящий момент двигателя почти не зависит от скорости вращения коленвала. В двигателях внутреннего сгорания напротив максимальный крутящий момент достигается в узком диапазоне частот вращения.
- В конструкции двигателя отсутствует система высоковольтного зажигания, клапанная система и, соответственно, распредвал. Грамотно спроектированный и технологично изготовленный двигатель Стирлинга не требует регулировки и настройки в процессе всего срока эксплуатации.
- В ДВС сгорание томливо-воздушной смеси в цилиндре двигателя является, по сути, взрывом со скоростью распространения взрывной волны 5-7 км/сек. Этот процесс дает чудовищные пиковые нагрузки на шатуны, коленчатый вал и подшипники. Стирлинги лишены этого недостатка.
- Двигатель не будет «капризничать» из-за потери искры, засорившегося карбюратора или низкого заряда аккумулятора, поскольку не имеет этих агрегатов. Понятие «двигатель заглох» не имеет смысла для Стирлингов. Стирлинг может остановиться, если нагрузка превышает расчетную. Повторно запуск осуществляется однократным проворотом маховика коленчатого вала.
-Простота конструкции позволяет длительно эксплуатировать Стирлинг в автономном режиме.
- Двигатель Стирлинга может использовать любой источник тепловой энергии, начиная с дров и заканчивая ядерным топливом.
- Сгорание топлива происходит вне внутреннего объема двигателя (в отличии от ДВС), что позволяет обеспечить равномерное горение топлива и полное его дожигание (т.е. отбор максимума содержащейся в топливе энергии и минимизация выброса токсичных компонентов).
Минусы стирлингов
- Поскольку сгорание топлива происходит вне двигателя, а отвод тепла осуществляется через стенки радиатора (Стирлинги имеют замкнутый объем) габариты двигателя увеличиваются.
- Еще один минус — материалоемкость. Для производства компактных и мощных Стирлинг-машин требуются жаропрочные стали, выдерживающие высокое рабочее давление и в то же время, обладающие низкой теплопроводностью. Обычная смазка для Стирлингов не годится — коксуется при высокой температуре, по этому необходимы материалы с низким коэффициентом трения.
- Для получения высокой удельной мощности в качестве рабочего тела в Стирлингах используют водород или гелий . Водород взрывоопасен, при высоких температурах растворяется в металлах, образуя металлогидриды — т.е. разрушает цилиндры двигателя. К тому же водород, как и гелий обладает высокой проникающей способностью и просачивается через уплотнения подвижных частей двигателя, снижая рабочее давление.
Комментарии:
Как рассчитать электрическую мощность оборудованияЧистая окружающая среда или сланцевый газ
sintezgaz.org.ua
Энергетика при БП. Двигатели Стирлинга. / Гостевая / НеПропаду
Сегодня о двигателе Стирлинга. (много интересного видео) Часть 1. Топливные генераторы. Для очень многих это неизвестно что такое, поэтому будет много теории. Еще это чудесное изобретение называют двигателем внешнего сгорания. Рабочий поршень заполнен воздухом или газом, а снаружи на него воздействует тепло. Так что для такого двигателя бензин не нужен, он может работать на всем что выделяет тепло, солнце, дрова, уголь, газ, нефть, ядерное топливо. На всем где можно получить разницу температур, есть модели которые работают даже от тепла руки. Работа двигателя от тепла чашки:Достаточно сказать что холодильники, тепловые насосы и кондиционеры по сути тоже являются двигателями Стирлинга, только работающими в обратном направлении.
Промышленные солнечные установки где солнечный свет концентрируется на рабочем теле двигателя создавая огромный перепад температуры.Мощность таких установок достигает 50-70 кВт.
КПД таких двигателей может быть от 5 на обычные модельки до 70% на промышленные варианты работающие под давлением 300 атмосфер, это на 50-70% выше двигателей внутреннего сгорания. Достаточно сказать что на космических аппаратах и новейших подводных лодках используются именно двигатели Стирлинга.
это двигатель разработаный NASA для работы в космосе, мощность 2500 кВт.рабочее тело в водороде под давлением 300 атмосфер.
Тогда возникает вопрос, почему же это чудо изобретение не стоит в каждом доме и дворе,когда достаточно положить рабочее тело в обычный костер и наслаждаться наличием электричества? Ответ думаю очевиден, пока есть нефть и те кто ней владеет в обычном пользовании мы это не увидим.Для контроля за запасами нефти развязываются войны и стираются целые государства.Думаю что никого не удивляет что США несет демократию только в те страны где есть нефтедобыча, Сирия, Кувейт, Ирак, Ливия, Иран, Судан, Пакистан и тд.И почему то нет никакого интересна к другим диктаторским режимам.
Это была лирика.Промышленно изготовленный двигатель Стирлинга для бытовых целей продается, но цена его абсолютно не разумная в районе 20-25 тыс. долл. При мощности 5-7 кВт.Желающих наверное не очень много.
Только совсем недавно немецкая фирма производящая бытовые котлы отопления, получила лицензию на установку в свои изделия двигателей с линейным генератором тока. При тепловой мощности 16-20 кВт. (это примерно обогрев дома площадью 120-150 метров) все излишнее тепло не выходит в трубу а преобразуется в электричество примерно 2 кВт.Размер такой преобразователь имеет как термос на 3 литра.Сложно сказать сколько будут стоить такие котлы, но заимев такой преобразователь, вопрос электроснабжения был бы решен. Положил рабочее тело в костер или топку и все!Можно себе представить как бы перевернулась энергозависимость, если бы в каждой котельной которая подает тепло на обогрев целых районов стояли в топках огромные Стирлинги высокого давления. Возможно на весь отопительный сезон можно было не зависеть от электростанций.А собственно кто тогда будет приносить мега прибыль генерирующим компаниям?
В продаже можно встретить красивые, работающие модели Стирлинга, но и модели стоят очень дорого, вот например та которая на фото стоит 32000 рублей.
видео их работы:
фото самодельных моделей
видео работы самодельных двигателей:
Работают даже от солнца:
Более продвинутый и мощный аппарат с водяным охлаждением:
интересное видео работы школьной модели:
Промышлеными образцами нас не балуют.Но никто не может запретить изготовить такой двигатель самостоятельно, хоть он и будет намного менее надежным и производительным чем промышленный образец, но он будет всеядным, а это как раз то что нам нужно.Для тех кто пробурился и нашел у себя в огороде нефть, это тема не для вас, ищите схемы перегонных кубов. )))
История.Двигатель Стирлинга был впервые запатентован шотландским священником Робертом Стирлингом 27 сентября 1816 года. Основной принцип работы двигателя Стирлинга заключается в постоянно чередуемых нагревании и охлаждении рабочего тела в закрытом цилиндре.Стоит сказать что первый промышленный Стирлинг проработал на механическом заводе приводя в действие механический молот 80 лет.В 1843 году Джеймс Стирлинг использовал этот двигатель на заводе, где он в то время работал инженером. В 1938 году фирма «Филипс» инвестировала в мотор Стирлинга мощностью более двухсот лошадиных сил и отдачей более 30 %. Двигатель Стирлинга имеет много преимуществ и был широко распространён в эпоху паровых машин.В основном есть три разновидности двигателя стирлинга.
Альфа-Стирлинг — содержит два раздельных силовых поршня в раздельных цилиндрах. Один поршень — горячий, другой — холодный. Цилиндр с горячим поршнем находится в теплообменнике с более высокой температурой, в то время как цилиндр с холодным поршнем находится в более холодном теплообменнике. У данного типа двигателя отношение мощности к объёму достаточно велико, но, к сожалению, высокая температура «горячего» поршня создаёт определённые технические проблемы.Регенератор находится между горячей частью соединительной трубки и холодной.
Бета-Стирлинг — цилиндр всего один, горячий с одного конца и холодный с другого. Внутри цилиндра движутся поршень (с которого снимается мощность) и «вытеснитель», изменяющий объем горячей полости. Газ перекачивается из холодной части цилиндра в горячую через регенератор. Регенератор может быть внешним, как часть теплообменника, или может быть совмещён с поршнем-вытеснителем.
Гамма-Стирлинг — тоже есть поршень и «вытеснитель», но при этом два цилиндра — один холодный (там движется поршень, с которого снимается мощность), а второй горячий с одного конца и холодный с другого (там движется «вытеснитель»). Регенератор может быть внешним, в этом случае он соединяет горячую часть второго цилиндра с холодной и одновременно с первым (холодным) цилиндром. Внутренний регенератор является частью вытеснителя.
Недостатки Стирлинга:Материалоёмкость — основной недостаток двигателя. У двигателей внешнего сгорания вообще, и двигателя Стирлинга в частности, рабочее тело необходимо охлаждать, и это приводит к существенному увеличению массо-габаритных показателей силовой установки за счёт увеличенных радиаторов.Для получения характеристик, сравнимых с характеристиками ДВС, приходится применять высокие давления (свыше 100 атм) и специальные виды рабочего тела — водород, гелий.(тут да, подводную лодку или космический корабль нам раскурочить не дадут)Тепло не подводится к рабочему телу непосредственно, а только через стенки теплообменников. Стенки имеют ограниченную теплопроводность, из-за чего КПД оказывается ниже, чем можно было ожидать. Горячий теплобменник работает в очень напряжённых условиях теплопередачи, и при очень высоких давлениях, что требует применения высококачественных и дорогих материалов. Создание теплообменника, который удовлетворял бы противоречивым требованиям, весьма трудно. Чем выше площадь теплообмена, тем меньше потери тепла. При этом растёт размер теплообменника и объём рабочего тела, не участвующий в работе. Поскольку источник тепла расположен снаружи, двигатель медленно реагирует на изменение теплового потока, подводимого к цилиндру, и не сразу может выдать нужную мощность при запуске.Для быстрого изменения мощности двигателя используются методы, отличные от тех, которые применялись в двигателях внутреннего сгорания: буферная ёмкость изменяемого объёма, изменение среднего давления рабочего тела в камерах, изменение фазного угла между рабочим поршнем и вытеснителем. (инерция, а нам как раз это и нужно для генератора.)
Преимущества:Тем не менее, двигатель Стирлинга имеет преимущества, которые вынуждают заниматься его разработкой.КПД двигателя Стирлинга может достигать 65-70% КПД от цикла Карно при современном уровне проектирования и технологии изготовления. Кроме того крутящий момент двигателя почти не зависит от скорости вращения коленвала. В двигателях внутреннего сгорания напротив максимальный крутящий момент достигается в узком диапазоне частот вращения.«Всеядность» двигателя — как все двигатели внешнего сгорания (вернее — внешнего подвода тепла), двигатель Стирлинга может работать от почти любого перепада температур: например, между разными слоями воды в океане, от солнца, от ядерного или изотопного нагревателя, угольной или дровяной печи и т. д.Двигатель не будет «капризничать» из-за потери искры, засорившегося карбюратора или низкого заряда аккумулятора, поскольку не имеет этих агрегатов. Понятие «двигатель заглох» не имеет смысла для Стирлингов. Стирлинг может остановиться, если нагрузка превышает расчетную. Повторно запуск осуществляется однократным проворотом маховика коленчатого вала.Простота конструкции — конструкция двигателя очень проста, он не требует дополнительных систем, таких как газораспределительный механизм. Он запускается самостоятельно и не нуждается в стартере. Его характеристики позволяют избавиться от коробки передач. Однако, как уже отмечалось выше, он обладает большей материалоёмкостью.Увеличенный ресурс — простота конструкции, отсутствие многих «нежных» агрегатов позволяет стирлингу обеспечить небывалый для других двигателей ресурс в десятки и сотни тысяч часов непрерывной работы.Экономичность — в случае преобразования в электричество солнечной энергии стирлинги иногда дают больший КПД (до 31,25 %), чем тепловые машины на пару.Сгорание топлива происходит вне внутреннего объема двигателя (в отличии от ДВС), что позволяет обеспечить равномерное горение топлива и полное его дожигание (т.е. отбор максимума содержащейся в топливе энергии и минимизация выброса токсичных компонентов).В конструкции двигателя отсутствует система высоковольтного зажигания, клапанная система и, соответственно, распредвал. Грамотно спроектированный и технологично изготовленный двигатель Стирлинга не требует регулировки и настройки в процессе всего срока эксплуатации.Бесшумность двигателя — стирлинг не имеет выхлопа, а значит — не шумит. Бета-стирлинг с ромбическим механизмом является идеально сбалансированным устройством и, при достаточно высоком качестве изготовления, даже не имеет вибраций (амплитуда вибрации меньше 0,0038 мм).Экологичность — сам по себе стирлинг не имеет каких-то частей или процессов, которые могут способствовать загрязнению окружающей среды. Он не расходует рабочее тело. Экологичность двигателя обусловлена прежде всего экологичностью источника тепла. Стоит также отметить, что обеспечить полноту сгорания топлива в двигателе внешнего сгорания проще, чем в двигателе внутреннего сгорания.
Подводные лодкиПреимущества «стирлинга» привели к тому, что ещё в первой половине 1960-х годов военно-морские справочники указывали на возможность установки на подводных лодках типа «Шёурмен» производства Швеции воздухонезависимых двигателей Стирлинга. Однако ни «Шёурмены», ни последовавшие за ними «Наккены» и «Вестеръётланды» указанные силовые установки так и не получили. И только в 1988 году головная субмарина типа «Наккен» была переоборудована под двигатели Стирлинга. С ними она прошла под водой более 10 000 часов. Другими словами, именно шведы открыли в подводном кораблестроении эру вспомогательных анаэробных двигательных установок. И если «Наккен» — первый опытный корабль этого подкласса, то субмарины типа «Готланд» стали первыми серийными лодками с двигателями Стирлинга, которые позволяют им находиться под водой непрерывно до 20 суток. В настоящее время все подводные лодки ВМС Швеции оснащены двигателями Стирлинга, а шведские кораблестроители уже хорошо отработали технологию оснащения этими двигателями подводных лодок, путём врезания дополнительного отсека, в котором и размещается новая двигательная установка. Подобные двигатели установлены также в новейших японских подводных лодках
Одной из нетрадиционных областей применения двигателя Стирлинга есть медицина. Его применяют в системах искусственного сердца. Источником энергии в таких системах, как правило, есть радиоизотопы.
пример применения двигателя для охлаждения процессора
Для нас плюсы всей этой технологии в том что грамотный человек сможет воспроизвести конструкцию из тех материалов которые будут под рукой, но для качественной и долговечной конструкции нужно подумать об этом заранее, уже сегодня.Для каждого человек может такой двигатель быть источником энергии.Если поселение больше 30-50 человек, то можно истопника придумать для круглосуточного получения электричества. А электричество это ВСЕ.Насосы, добыча воды, освещение, охрана периметра, работа электроинструмента, бытовые приборы, компьютер с собранными данными, в общем оплот цивилизации.Инетесное видео от энтузиастов которые восстанавливают двигатели Стирлинга успешно работавшие в начале прошлого века.
Что хочется сказать в заключении.Вероятнее всего двигатель Стирлинга является панацеей в период БП для получения энергии,как электрической так и механической.Потому что не привязан к солнцу, которое светит днем, а электричество нужно ночью,мало того когда света нужно больше всего зимой так на небе висят предательские тучи месяцами.Не привязан к ветру, который дует когда хочет и как хочет, не знаю как у вас, у меня достаточный ветер дует 20 дней в году.Не привязан к бензину и нефти, может в Тюмени и можно докопаться до нефти при желании, у нас только если копать насквозь до залежей Венесуэлы.Не привязан к напору и потоку воды, кому то и хорошо в предгорьях среди рек и ручьев, ближайшая от меня большая вода строго на север по горизонту 12 км или строго вниз 40 метров.
Стирлинг подарил нам свое уникальное изобретение которое можно и нужно реализовывать.Удобство, надежность, всеядность как например обычная печка или топка.Главное подбрасывать дрова в топку, или уголь, у кого как.
Спасибо за внимание, продолжение следует…
nepropadu.ru
Двигатель Стирлинга
Автор: Юлиюс Мацкерле (Julius Mackerle)Источник: «Современный экономичный автомобиль» [1] 21174 2Важным новым источником механической энергии для привода автомобиля является двигатель Стирлинга. Он почти неизвестен, существуют только его прототипы [2], поэтому можно дать лишь беглое описание его принципа действия и конструкции. В первоначальном виде он существовал как тепловая расширительная машина, в цилиндре которой рабочее тело, например, воздух, перед сжатием охлаждался, а перед расширением — нагревался. Схема и принцип действия такого двигателя показаны на рис. 1.
1 — цилиндр; 2 — охлаждающая рубашка; 3 — рабочий поршень; 4 — вытеснитель; 5 — шток вытеснителя. |
В верхней части цилиндра 1 имеется водяная охлаждающая рубашка 2, а дно цилиндра постоянно нагревается пламенем. В цилиндре размещен рабочий поршень 3 уплотненный поршневыми кольцами и соединенный шатуном с коленчатым валом (на рисунке коленчатый вал не показан). Между дном цилиндра и рабочим поршнем находится поршень-вытеснитель 4, который перемещается в цилиндре с большим зазором. Заключенный в цилиндре воздух через этот зазор перекачивается вытеснителем 4 либо к днищу рабочего поршня, либо к нагреваемому дну цилиндра. Вытеснитель приводится в движение штоком 5, проходящим через уплотнение в поршне, и приводимым эксцентриковым механизмом, который вращается с углом запаздывания около 90° по сравнению с механизмом привода рабочего поршня.
В положении а поршень находится в НМТ (нижняя мертвая точка) и охлаждаемый стенками цилиндра воздух заключен между ним и вытеснителем. В следующей фазе б вытеснитель движется вверх, а поршень остается в НМТ. Воздух между ними выталкивается через зазор между вытеснителем и цилиндром к дну цилиндра и при этом охлаждается стенками цилиндра. Фаза в является рабочей, в течение которой воздух нагревается горячим дном цилиндра, расширяется и выталкивает оба поршня вверх к ВМТ (верхняя мертвая точка).
После совершения рабочего хода вытеснитель возвращается в нижнее положение к дну цилиндра и выталкивает воздух через зазор между стенками цилиндра в камеру под поршнем, воздух при этом охлаждается стенками. В положении г холодный воздух подготовлен к сжатию, и рабочий поршень движется от ВМТ к НМТ. Поскольку работа, затрачиваемая на сжатие холодного воздуха, меньше работы, совершаемой при расширении горячего воздуха, то возникает полезная работа. Аккумулятором энергии, необходимой для сжатия воздуха, служит маховик.
В описанном исполнении двигатель Стирлинга имел низший КПД, так как теплоту, содержащуюся в воздухе после совершения рабочего хода, необходимо было отводить в охлаждающую жидкость через стенки цилиндра. Воздух в течение одного хода поршня не успевал охлаждаться в достаточной степени, и требовалось увеличить время охлаждения, вследствие чего частота вращения двигателя также была небольшой. Термический КПД, который зависит, как говорилось ранее, от разницы максимальной и минимальной температур рабочего цикла, был также небольшим. Теплота отработавшего воздуха отводилась в охлаждающую воду и полностью терялась.
1 — вытеснитель; 2 — рабочий поршень; 3 — радиатор; 4 — регенератор; 5 — подогреватель с форсункой; 6 — трубки подогревателя; 7 — вход воздуха в подогреватель; 8 — выход отработавших газов из подогревателя. |
Двигатель Стирлинга был значительно усовершенствован фирмой «Филипс» («Philips» – Нидерланды). Прежде всего, был применен внешний регенератор теплоты, через который осуществлялась перекачка воздуха из верхней части цилиндра в нижнюю под действием вытеснителя. Последовательно к регенератору во внешнем контуре был подключен радиатор. Регенератор аккумулирует теплоту воздуха, поступающего после расширения в холодную камеру. При течении воздуха в обратном направлении аккумулятор вновь отдает ему теплоту. Тем самым возрастает разница максимальной и минимальной температур цикла и теплоту необходимо отводить системой охлаждения. Радиатор, размещенный за регенератором, отводит только часть этой теплоты, остальная сохраняется в аккумуляторе и используется вновь. Вследствие этого не только улучшается КПД двигателя, но и увеличивается его максимальная частота вращения, что влияет на мощность и удельную массу двигателя. Теплота отработавших газов подогревателя используется для повышения температуры свежего воздуха, подаваемого в его камеру сгорания. Описанная конструктивная схема двигателя показана на рис. 2.
Поршень 2 является рабочим, он передает давление воздуха на кривошипно-шатунный механизм, а вытеснитель 1 предназначен для перемещения воздуха из верхней части цилиндра в нижнюю. В положении а воздух из пространства между двумя поршнями поступает через радиатор 3 и регенератор 4 в трубки подогревателя 6 и затем в верхнюю часть цилиндра. Трубки подогревателя размещены в камере сгорания, куда свежий воздух для сгорания подается по каналам 7 и затем, проходя через теплообменник, поступает в зону распылителя форсунки 5; отработавшие газы из подогревателя отводятся через выпускной трубопровод 8.
В положении а воздух сжат и при движении в верхнюю часть цилиндра нагревается сначала в регенераторе, а затем в подогревателе. В положении б весь воздух вытеснен из пространства между двумя поршнями и выполняет работу, перемещая оба поршня в нижнее положение. В положении в после совершения работы рабочий поршень остается в нижнем положении, а вытеснитель 1 начинает выталкивать воздух из верхней части цилиндра в пространство между поршнями через регенератор, в котором воздух отдает значительную часть своей теплоты, и радиатор, где воздух охлаждается еще глубже. В последней фазе цикла г воздух охлажден и вытеснен из верхней части цилиндра в пространство между поршнями, где происходит его сжатие.
Сжатие холодного воздуха, поступление его через регенератор и радиатор в верхнюю часть цилиндра, последующее расширение и охлаждение воздуха представляют рабочий цикл. В цилиндре сохраняется постоянная масса воздуха, поэтому цилиндр работает без выхлопа. Для подогрева можно использовать любой источник тепла. В рассмотренной схеме применен котел на жидком топливе; содержание вредных веществ зависит от полноты сгорания топлива в камере сгорания котла. Поскольку при этом создается режим непрерывного сгорания при относительно низкой температуре и большом избытке воздуха, можно достичь полного сгорания и небольшого содержания вредных веществ.
Преимущество двигателя Стирлинга заключается также в том, что он может работать не только на разнообразных топливах, но дает возможность применять различные виды источников теплоты. Это означает, что работа двигателя не зависит от наличия атмосферы. Он может одинаково хорошо работать в замкнутом пространстве как на подводных лодках, так и на спутниках. При использовании теплового аккумулятора с LiF теплота подводится к двигателю по теплопроводу, как это показано на рис. 3.
1 — резервуар с LiF; 2 — жидкий натрий; 3 — нагревательная спираль; 4 — теплоизоляция. |
В нижней части рис. 2 показан ромбический механизм привода, который управляет движением обоих поршней. Для привода используются два коленчатых вала, соединенных парой шестерен и вращающихся в противоположных направлениях. Концы штока вытеснителя 1 и пустотелого штока поршня 2 через отдельные шатуны соединены с обоими коленчатыми валами. Если кривошипы обоих коленчатых валов находятся в верхнем положении и движутся из положения а в положение б, то шатуны рабочего поршня 2 находятся вблизи ВМТ и он немного перемещается около ВМТ. Шатуны вытеснителя, перемещающегося в этой фазе цикла, движутся вниз и поршень также движется с наибольшей скоростью из положения а в положение б.
Противоположное направление вращения двух коленчатых валов позволяет разместить на них противовесы, необходимые для уравновешивания сил инерции первого порядка и их моментов от возвратно-поступательно движущихся масс, которые существуют у одноцилиндрового и рядных двигателей.
Ромбический механизм имеет еще и то преимущество, что шатуны симметрично передают усилия от штоков поршней на коленчатые валы, а в подшипниках и уплотнениях поршней не возникают боковые силы. Последнее очень важно, так как для работы двигателя с хорошим КПД необходимо высокое рабочее давление.
У обычных кривошипно-шатунных механизмов при высоком давлении на поршень и больших углах отклонения шатуна возникают большие боковые силы, действующие на поршень и являющиеся причиной больших потерь на трение и большого износа. При применении крейцкопфа или же ромбического механизма это отрицательное явление устраняется и можно достичь хорошего уплотнения поршней.
Чтобы штоки не передавали большие усилия на коренные и шатунные подшипники коленчатых валов, под рабочим поршнем поддерживается противодавление, равное среднему рабочему давлению в цилиндре, оно составляет около 20 МПа.
Зависимость индикаторного КПД ηi от удельной литровой мощности Nуд одноцилиндрового двигателя Стирлинга мощностью 165 кВт показана на рис. 4. Температура в подогревателе равна 700 °C, охлаждающей жидкости — 25 °C. Рабочее давление газа составило 11 МПа.
На диаграмме показаны зависимости для трех видов рабочего тела: воздуха, гелия и водорода. Точки с числами на кривых обозначают соответствующую частоту вращения (в мин-1). Видно, что наибольшие значения КПД достигаются при низких значениях удельных мощностей. Заметно также большое различие показателей двигателя при использовании вместо воздуха водорода.
C — насосное кольцо; R — регулятор давления. |
Высокое давление рабочего тела, действующее в двигателе Стирлинга, требует наличия толстых стенок картера и цилиндра. При применении водорода в качестве рабочего тела масло не должно попадать в рабочее пространство и поэтому необходимо иметь высокогерметичное уплотнение штока поршня. Хорошо зарекомендовало себя цилиндрическое диафрагменное уплотнение в сочетании с масляной подушкой (рис. 5). Диаметры d и d2 выбраны так, чтобы объем масла под диафрагмой сальника не изменялся при перемещении штока. Маслосъемное поршневое кольцо C выполняет функцию насосного элемента, а регулятор R поддерживает давление масла под диафрагмой на уровне среднего давления газа в цилиндре.
Схематический поперечный разрез двигателя Стирлинга с ромбическим механизмом приведен на рис. 6. Это двигатель первого поколения, имеющий картер с высоким избыточным давлением. Двигатель Стерлинга постоянно совершенствуется и его четырехцилиндровая модель второго поколения уже имеет поршень двойного действия. Соединение горячей верхней камеры одного цилиндра с холодной камерой под поршнем соседнего цилиндра позволяет достичь необходимого изменения объема без отдельного поршня-вытеснителя. У четырехцилиндрового двигателя сдвиг между кривошипами поршней соседних цилиндров составляет 90°, что весьма нежелательно.
1 — выход воздуха из подогревателя; 2 — кольцевая камера сгорания; 3 — горячая камера цилиндра; 4 — вход воздуха в подогреватель; 5 — поршень-вытеснитель; 6 — цилиндр; 7 — камера сжатия (холодная камера) цилиндра; 8 — шток поршня-вытеснителя; 9 — рабочий поршень; 10 — шток рабочего поршня; 11 — траверса рабочего поршня; 12 — шатун рабочего поршня; 13 — шатун поршня-вытеснителя; 14 — траверса поршня-вытеснителя; 15 — топливная форсунка; 16 — горелка; 17 — подогреватель; 18 — трубки подогревателя; 19 — ребра цилиндра; 20 — регенератор; 21 — трубки радиатора; 22 — камера противодавления; 23 — противовес; 24 — приводная шестерня; 25 — коленчатый вал. |
Схема соединения соседних цилиндров с таким расположением кривошипов показана на рис. 7. Соединительные трубопроводы связывают горячую камеру, подогреватель, регенератор, радиатор и холодную камеру. Два коленчатых вала вращаются в одном направлении и связаны с поршнями через крейцкопфный механизм. В нижней части рис. 7 на диаграммах жирной линией обозначены фазы цикла, соответствующие положениям 1—4 поршней. Для привода поршней используется или четырехопорный коленчатый вал (двигатели шведской фирмы «Юнайтед Стирлинг») или же наклонная шайба (двигатель «Филипс 4-215DA»).
На рис. 7 показаны последовательные этапы 1—2 — сжатие холодного газа в холодной камере; 2—3 — перемещение сжатого воздуха в горячую камеру — рабочий ход; 3—4 — расширение-охлаждение газа при поступлении в холодную камеру — рабочий ход; 4—1 — перемещение газа в холодную камеру.
А — горячая камера; Б — подогреватель; В — регенератор; Г — радиатор; Д — холодная камера. |
В рядном двигателе соединительный канал между четвертым и первым цилиндрами имеет большую длину и объем, поэтому используются двигатели с V-образным или звездообразным расположением цилиндров. В обоих случаях все четыре цилиндра расположены близко друг от друга, а их верхние части (головки) образуют группы, обогреваемые общим котлом. Теплоизоляция такой конструкции также отличается простотой.
Фирма «Филипс» внесла в двигатель Стерлинга много интересных изменений. Для первых регенераторов использовались мелкие сита из тонкой медной проволоки, в дальнейшем они были заменены блоком из пористой керамики. Материал регенератора должен иметь большую удельную теплоемкость и выдерживать резкие изменения температуры. Поэтому регенератор должен быть разделен на несколько меньших элементов. Пористый материал легко аккумулирует и отдает теплоту и позволяет благодаря этому обеспечить работу двигателя с частотой вращения до 4000 мин-1.
Мощность двигателя зависит от среднего рабочего давления. У двигателя «Филипс» это давление составляло около 20 МПа. Чтобы избежать прижатия поршня к стенке цилиндра, был применен уже упомянутый ромбический механизм и, кроме того, под рабочим поршнем была образована камера, в которой поддерживалось среднее рабочее давление газа. В этих условиях кривошипно-шатунный механизм испытывает нагрузки вследствие небольших отклонений от этого давления, а также действие инерционных сил, поскольку давление газов в цилиндре меняется незначительно. На рис. 8 приведены мгновенные значения относительного крутящего момента Mτ/Mср двигателя Стирлинга и дизельного двигателя за один оборот коленчатого вала [3].
Значительные трудности возникают при регулировании мощности двигателя Стирлинга. Изменение мощности, происходящее в результате изменения количества подаваемого в подогреватель топлива, незначительно. Более заметного результата можно добиться при изменении давления или количества рабочего тела. Этот способ регулирования мощности используется в автомобильном двигателе Стирлинга. Для уменьшения мощности часть газа из цилиндров перепускается в резервуар низкого давления; для увеличения мощности газ подается в цилиндры из резервуара высокого давления, куда он предварительно перекачивается специальным компрессором из резервуара низкого давления. У двигателей с поршнем двойного действия для снижения мощности газ перепускается из верхней части поршня в нижнюю через специальный канал. Переход от полной мощности к холостому ходу длится 0,2 с; обратный процесс занимает около 0,6 с.
Чтобы потери на трение газа при прохождении его через узкие каналы регенератора и радиатора были небольшими, применяют гелий, а также пытаются использовать водород. Для уменьшения размеров и массы четыре цилиндра с поршнями двойного действия в двигателе второго поколения размещаются как показано на рис. 9. Вместо коленчатого вала применен привод с помощью наклонных шайб. Наличие высокого давления газов по обе стороны поршня обеспечивает передачу на приводную шайбу только небольшой разницы давлений. Поскольку в двигателе Стирлинга вся отводимая теплота передается в охлаждающую жидкость, то радиатор этого двигателя должен быть в 2 раза больше, чем у обычных двигателей внутреннего сгорания.
В качестве примера рассмотрим два автомобильных двигателя Стирлинга. Четырехцилиндровый двигатель первого поколения с ромбическим механизмом, изображенный на рис. 10, имеет диаметр цилиндра 77,5 мм, ход поршня 49,8 мм (рабочий объем 940 см3), развивает мощность 147 кВт при 3000 мин-1 и среднем давлении в цилиндре порядка 22 МПа. Температура головки цилиндра поддерживается около 700 °C, а охлаждающей жидкости — на уровне 60 °C. Масса сухого двигателя составляет 760 кг. Холодный пуск и прогрев двигателя до достижения температуры головки цилиндра 700 °C длятся около 20 с. При температуре воды 55 °C индикаторный КПД двигателя на испытательном стенде достиг 35 %. Удельная мощность 156 кВт/дм3, а удельная масса на единицу мощности 5,2 кг/кВт.
Схематический разрез двигателя Стирлинга второго поколения модели «Филипс 4-215 DA», предназначенного для легкового автомобиля, изображен на рис. 9. Двигатель имеет примерно такие же размеры и массу, как и обычный бензиновый двигатель, и его мощность равна 127 кВт. Четыре цилиндра с поршнями двойного действия расположены вокруг оси приводного вала с наклонной шайбой. Котел подогревателя, общий для всех четырех цилиндров, имеет одну форсунку. На автомобиле «Форд Торино» (США) расход топлива с этим двигателем был на 25 % ниже, чем с бензиновым V-образным 8-цилиндровым двигателем. Содержание NOx в отработавших газах системы подогрева благодаря применению их рециркуляции было намного меньше установленной нормы.
Диаметр цилиндра двигателя «Филипс 4-215 DA» — 73 мм, ход поршня 52 мм. Мощность двигателя 127 кВт при частоте вращения 4000 мин-1. Температура в подогревателе (температура головок цилиндров) равна 700 °C, а охлаждающей жидкости — 64 °C.
1 — подогреватель; 2 — трубки подогревателя; 3 — теплообменник; 4 — генератор; 5 — радиатор. |
Шведская фирма «Юнайтед Стерлинг» создала свой двигатель Стирлинга таким образом, чтобы можно было в наибольшей степени использовать детали, серийно выпускаемые автомобильной промышленностью. Используются обычный коленчатый вал и шатун, который совместно с крейцкопфом преобразует во вращательное движение вала поступательное движение поршня двойного действия. Разрез этого четырехцилиндрового V-образного двигателя изображен на рис. 11. Ряды цилиндров расположены под небольшим углом, головки цилиндров образуют общую группу, подогреваемую одной горелкой.
Предполагаемая удельная масса этого двигателя равна 2,4 кг/кВт, что можно сравнить с показателями очень хорошего малоразмерного высокооборотного дизеля. Удельная масса двигателей Стирлинга уменьшилась с 6,1–7,3 кг/кВт до 4,3 кг/кВт и постоянно снижается.
Производство двигателя Стирлинга требует технологии, совершенно отличной от технологии производства двигателей внутреннего сгорания, что будет тормозить его внедрение в производство. Однако разработки таких двигателей продолжаются, поскольку традиционные бензиновый и дизельный двигатели не будут отвечать перспективным требованиям необходимой чистоты отработавших газов, а созданные двигатели Стирлинга дают основание надеяться, что эту проблему удастся решить. Так как изменение давления газов в цилиндре двигателя Стирлинга носит плавный характер, то он работает стабильно и тихо, напоминая паровую машину. Однако большое количество отводимой теплоты требует новых решений в области систем охлаждения.
Большой прогресс в двигателях Стирлинга достигнут при создании двигателя «Филипс 4-215 DA». Двигатель предназначен для применения в легковых автомобилях и занимает в них столько же места, сколько и обычный бензиновый V-образный двигатель равной мощности. Масса двигателя «Филипс 4-215 DA» равна 448 кг и при максимальной мощности 127 кВт его удельная масса составляет 3,5 кг/кВт. Индикаторный КПД этого двигав теля при использовании е качестве рабочего тела водорода под давлением 20 МПа равен 35 %.
Холодный пуск двигателя длится 15 с, расход топлива автомобилем в условиях городского движения на 25 % меньше, чем в случае обычного бензинового двигателя. Регулирование мощности двигателя производится изменением количества и давления рабочего тела.
Плотность водорода в 14 раз ниже плотности воздуха, а его теплоемкость также в 14 раз выше теплоемкости воздуха. Это положительно сказывается на гидравлических потерях, особенно в регенераторе, и в целом ведет к росту КПД двигателя (см. рис. 4).
Опубликовано 24.03.2014Читайте также
Сноски
- ↺ Мацкерле Ю. Современный экономичный автомобиль/Пер. с чешск. В. Б. Иванова; Под ред. А. Р. Бенедиктова. - М.: Машиностроение, 1987. - 320 с.: ил.//Стр. 22 - 23 (книга есть в библиотеке сайта). – Прим. icarbio.ru
- ↺ В настоящий момент двигатели Стирлинга используются на солнечных электростанциях. – Прим. icarbio.ru
- ↺ В книге – опечатка либо дизельный, либо бензиновый двигатель. – Прим. icarbio.ru
Комментарии
icarbio.ru
Трубчатый нагреватель двигателя стирлинга
Использование: двигателестроение. Сущность изобретения: нагреватель представляет собой конструкцию из слоя параллельных труб, уложенных с промежутком 1 1,5 мм между металлическими сетками или решетными полотнами. Размеры ячеек сеток или полотен, а также расстояние их от слоя труб выбраны вполне определенными. 3 ил.
Изобретение относится к энергетике, а конкретнее к нагревателям двигателей Стирлинга (ДС).
Известны нагреватели ДС различных типов: полостные, трубчатые, щелевые и т.д. Известен также трубчатый нагреватель ДС, содержащий систему трубок, подключенных между полостью расширения рабочего тела и регенератором. Однако такой нагреватель не эффективен. Предлагаемый нагреватель представляет собой слой труб, сложенных параллельно друг другу с промежутком 1-1,5 мм, расположенный между металлическими сетками или решетными полотнами. Сетка или полотно со стороны входа газовоздушной смеси имеют отверстия меньше, либо равные критическому, а со стороны выхода отверстия больше критического. Входная сетка находится на расстоянии 1-3 мм от слоя труб, а выходная на расстоянии 2-10 мм. На фиг. 1 представлена схема нагревателя, вид сверху; на фиг.2 взаимное расположение слоя труб и сеток нагревателя; на фиг.3 вид А на фиг.2. Приняты следующие обозначения: 1 трубы нагревателя рабочего тела; 2 сетка или решетное полотно; 3 выход рабочего тела; 4 входная сетка; 5 выходная сетка. Стрелкой на фиг,2 и 3 показано направление подачи газовоздушной смеси (ГВС). При поджигании на выходе ГВС, пронизывающей нагреватель, пламя постепенно из-за большого размера отверстий проходит промежуток между выходной сеткой (полотном) и слоем труб. Далее по мере прогревания через щели закритического размера сетки 5 оно доходит до входной сетки 4, пройдя слой труб 1. Пламя к источнику ГВС не распространяется, так как размер отверстий сетки 4 меньше или равен критическому. Слой труб с рабочим телом оказывается накаливаемым с одной стороны микрофакелами длиной 1-3 мм, равной расстоянию между входной сеткой и слоем труб, с другой стороны под влиянием излучения с выходной сетки, являющейся одновpеменно стабилизатором пламени. Выходная сетка увеличивает температуру труб на 50-100оС и ускоряет вхождение двигателя в оптимальный режим. Как показали эксперименты на макете, расстояние между слоем труб и выходной сеткой, равное 2-10 мм, является оптимальным. Кроме того в данной конструкции достигается равномерный нагрев нагревателя, позволяющий увеличить выходную мощность ДС.Формула изобретения
ТРУБЧАТЫЙ НАГРЕВАТЕЛЬ ДВИГАТЕЛЯ СТИРЛИНГА, содержащий систему трубок, подключенных между полостью расширения рабочего тела и регенератором, отличающийся тем, что система представляет собой слой труб, уложенных параллельно друг другу с промежутком 1 1,5 мм между металлическими сетками или решетными полотнами, причем сетка или полотно со стороны входа газовоздушной смеси имеет отверстия, равные либо меньше критического, и располагается на расстоянии 1 3 мм от слоя труб, а сетка или полотно со стороны выхода газовоздушной смеси имеет отверстия больше критического и располагается на расстоянии 2 10 мм от слоя труб.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3Похожие патенты:
Изобретение относится к теплоэнергетике, в частности к двигателям Стирлинга (ДС)
Изобретение относится к двигателестроению, а именно к миниатюрным двигателям, работающим по циклу Стирлинга, и может быть использовано в медицине для привода насоса крови, в автономных энергетических установках систем навигации и систем жизнеобеспечения в труднодоступных районах, на космических и подводных аппаратах, длительное время работающих без участия человека
Изобретение относится к области двигателестроения, а именно к двигателям, работающим по циклу Стирлинга, и может быть использовано в автономных установках систем навигации и систем жизнеобеспечения в труднодоступных районах, а также в аппаратах, длительное время находящихся под землей, в космическом пространстве и под водой
Изобретение относится к двигателестроению, в частности к топливной аппаратуре двигателей внешнего сгорания
Изобретение относится к системам для производства электроэнергии и тепла
Изобретение относится к машиностроению, а именно к двигателестроению и может быть использовано при создании двигателей Стирлинга
Изобретение относится к энергетике, а конкретнее к ДС (двигателям Стирлинга)
Изобретение относится к двигателестроению. Двигатель внешнего нагрева содержит систему управления с блоком управления, систему нагрева и охлаждения, цилиндр с торцовой и боковой стенками. Во внутренней полости цилиндра размещены рабочий и вытеснительный поршни, кинематически связанные с валом. Боковая стенка цилиндра выполнена пустотелой, содержащей между внутренней и внешней стенками полости нагрева и охлаждения. Полости нагрева и охлаждения соединены соответственно с входными и выходными трубопроводами систем нагрева и охлаждения. Система нагрева содержит трубопроводы низкого и высокого давления, насос и теплообменник нагрева. Около теплообменника нагрева установлен нагреватель. Система охлаждения содержит трубопроводы низкого и высокого давления, насос и теплообменник охлаждения. К теплообменнику охлаждения присоединены подводящий и отводящий трубопроводы. Двигатель содержит датчики температуры, установленные соответственно перед и после теплообменника нагрева и теплообменника охлаждения. Датчики температуры соединены электрическими связями с блоком управления. К валу присоединен электрогенератор. Выход электрогенератора соединен электрическими проводами с коммутатором. К коммутатору присоединен электродвигатель привода и аккумулятор. Изобретение направлено на увеличение надежности и экономичности двигателя. 5 з.п. ф-лы, 2 ил.
Изобретение относится к двигателям внешнего сгорания. Теплообменная часть двигателя Стирлинга представляет два цилиндра: горячий и холодный. Цилиндры выполнены с поршнями-вытеснителями равных диаметров и ходов поршней, противофазно движущимися, плотно подогнанными к цилиндрам. Цилиндры выполнены с общим рабочим пространством и уравновешенным действием рабочего давления на поршни-вытеснители. Изобретение направлено на повышение эффективности двигателя Стирлинга. 2 ил.
Изобретение относится к энергетике малых мощностей. Устройство для получения электроэнергии из тепла окружающей среды состоит из поршневого двигателя, трубопровода с регенератором, рабочего тела, генератора электрического тока, бака с трубчатым водораспределителем, капельно-пленочного оросителя, шаровых вентилей, литий-ионного аккумулятора, электронного блока управления и стартера. Устройство выполнено в виде двухцилиндрового двигателя Стирлинга, имеющего горячий цилиндр и холодный цилиндр. Головка горячего цилиндра соединена полыми трубками с нагревателем. Выход горячего цилиндра подключен к трубопроводу с установленным в нем регенератором. Внутри регенератора размещена проволочная матрица. Выход регенератора через трубопровод подключен к камере холодного цилиндра. Холодный цилиндр снабжен водоиспарительной системой охлаждения, состоящей из двух мини-градирен, бака, трубчатого водораспределителя с капельно-пленочным оросителем. Головка холодного цилиндра соединена через термоинтерфейс с блоком тепловых трубок, отводящих тепло от корпуса цилиндра с помощью радиатора-холодильника, постоянно смачиваемого водой в двух мини-градирнях. На горячий и холодный цилиндры установлены юстированные датчики давления и температуры. Техническим результатом является повышение экономичности и КПД. 9 з.п. ф-лы, 2 ил.
Трубчатый нагреватель двигателя стирлинга
www.findpatent.ru