Энциклопедия по машиностроению XXL. Котел пиковый водогрейный


Работа водогрейных и комбинированных котлов в пиковом режиме и включение их в тепловую схему ТЭЦ

Работа водогрейных и комбинированных котлов в пиковом режиме и включение их в тепловую схему ТЭЦ

Работа водогрейных и комбинированных котлов в пиковом режиме и включение их в тепловую схему ТЭЦ, где подогрев сырой и химически очищенной воды осуществляется в подогревателях за счет отборного пара турбин, водогрейные котлы предназначаются для подогрева сетевой воды сверх той температуры, которую в состоянии обеспечить основные подогреватели. До применения водогрейных котлов покрытие непродолжительных пиковых теплофикационных нагрузок на ТЭЦ осуществлялось за счет включения пиковых пароводяных подогревателей, работающих на редуцированном паре от энергетических котлов. С повышением параметров пара на котлах такое использование пара становилось все более и более нерациональным.

Покрытие пика теплофикационной нагрузки при помощи водогрейных котлов освобождает от необходимости иметь на ТЭЦ соответствующую паровую мощность, т. е. на ТЭЦ может быть установлено меньшее количество паровых котлов высокого давления, что позволяет снизить капитальные затраты и высвободить энергетические котлы высокого давления для установки их на других электростанциях. В настоящее время вся работа водогрейных и комбинированных котлов в пиковом режиме и включение их в тепловую схему ТЭЦ проектируются с установкой пиковых водогрейных котлов, что предусмотрено в действующих нормах технологического проектирования тепловых электростанций. Суммарная мощность пиковых водогрейных котлов обычно равна количеству теплоты в отборном паре (р = 1,2÷2,5 кгс/см2) устанавливаемых турбин и составляет ориентировочно 50% максимальной тепловой нагрузки ТЭЦ.

Коэффициент теплофикации, т. е. отношение количества теплоты, получаемого из отборов турбин, к общему количеству теплоты, потребному для теплофикации:

αтец = Q</Qмакс , (5.42)

в этом случае αтэц = 0,5. В каждом конкретном случае эта величина подлежит уточнению.

Наиболее рентабельной является работа водогрейных и комбинированных котлов в пиковом режиме и включение их в тепловую схему ТЭЦ, работающих на газообразном или жидком топливе. В восточных районах страны, где имеется дешевое твердое топливо из открытых разработок, может явиться целесообразным установка пиковых водогрейных котлов и на твердом топливе.

Следует отметить, что развитие современной теплоэнергетики в области теплофикации характеризуется укрупнением единичной мощности промышленно-отопительных и отопительных ТЭЦ благодаря концентрации тепловых нагрузок и увеличению радиуса теплофикации.

Существенное влияние на выбор основного оборудования оказывает способ покрытия пиков технологических паровых нагрузок и собственных нужд ТЭЦ. Решение этих вопросов на базе использования выпускающегося до сего времени котельного оборудования (водогрейные котлы и паровые котлы р≥40 кгс/см2) не обеспечивало возможности выбора оптимального состава основного оборудования ТЭЦ. Специализация котлов по виду покрываемой тепловой нагрузки, завышенные параметры пара и малая производительность паровых котлов низкого давления приводили к необходимости принятия ряда вынужденных решений, ведущих к увеличению стоимости источника теплоснабжения, ухудшению его технико - экономических показателей и усложнению условий эксплуатации, связанному с наличием разнотипного оборудования.

К этим вынужденным решениям относятся покрытие пиковых технологических паровых нагрузок от энергетических котлов или из отборов дополнительно устанавливаемой паровой турбины с соответствующим повышением, а ТЭЦ сверх оптимального, установка в чисто отопительных ТЭЦ для покрытия собственных нужд в паре (мазутное хозяйство и т. д.) паровых котлов на низкие или средние параметры пара или турбоагрегатов с двумя отборами пара; установка в отопительных котельных, наряду с водогрейными котлами, котлов типа ДКВР и ГМ для покрытия собственных нужд котельной в паре.

Улучшение положения может быть достигнуто при установке на ТЭЦ и в отопительных котельных комбинированных пароводогрейных котлов. Комбинированные теплофикационные котлы, устанавливаемые на ТЭЦ и в крупных котельных, должны осуществлять покрытие собственных нужд в паре для чисто отопительных ТЭЦ и котельных и покрытие пиков по обоим видам тепловой нагрузки при установке котлов на промышленно-отопительных ТЭЦ. Таким образом, в эксплуатации ТЭЦ возможны два режима использования комбинированных котлов, а именно в период с низкими значениями температуры наружного воздуха (ниже - 10°С при атэц = 0,5), когда для покрытия отопительной нагрузки требуется использование пиковых источников теплоты, и в период, когда вся отопительная нагрузка покрывается от основного энергетического оборудования. При работе в первом режиме покрытие пиков тепловых нагрузок обеспечивается использованием комбинированных котлов и запаса установленной паровой мощности энергетических котлов (сверх пропускной способности турбин).

При колебании суточного графика технологической нагрузки и при снижении ее пика, работа водогрейных и комбинированных котлов в пиковом режиме и включение их в тепловую схему ТЭЦ избыток паровой мощности пароводогрейных котлов используется для подогрева сетевой воды в пиковых бойлерах. Кроме обеспечения независимости работы комбинированных котлов от колебаний технологической нагрузки, создается большая надежность теплоснабжения при выходе из строя энергетического котла.

Работа водогрейных и комбинированных котлов в пиковом режиме и включение их в тепловую схему ТЭЦ во втором режиме характеризуется увеличением запаса паропроизводительности энергетических котлов по сравнению с пропускной способностью турбин при работе их по теплофикационному графику и уменьшением технологической нагрузки. Это практически исключает необходимость использования пароводогрейных котлов в этом режиме. Однако в некоторых случаях, как, например, при прохождении суточных максимумов технологической нагрузки в период ремонта основного оборудования без существенного снижения мощности ТЭЦ, может потребоваться их включение. Учитывая малое время, требуемое на пуск котла, их работу следует предусматривать только в период, необходимый для покрытия пиков, с отключением их на остальное время суток. Поскольку конструкция котлов не обеспечивает чисто парового режима работы, нагрузка котла по водогрейному контуру должна поддерживаться минимально возможной, для уменьшения недовыработки электроэнергии, связанной с вытеснением отопительных отборов турбоустановок. Эти требования справедливы и для первого режима работы при уменьшении доли участия комбинированного котла в покрытии пиковой отопительной нагрузки.

Котельный завод Энергия-СПБ производит различные модели водогрейных котлов. Транспортирование водогрейных котлов и другого котельно-вспомогательного оборудования осуществляется автотранспортом, ж/д полувагонами и речным транспортом. Котельный завод поставляет продукцию во все регионы России и Казахстана.

kotel-kv.com

Пиковый водогрейный котел - Энциклопедия по машиностроению XXL

На рис. 8.18 приведена схема сетевой подогревательной установки теплофикационного энергоблока с турбиной Т-250-240. Схема сетевых трубопроводов ТЭЦ секционная, обеспечивающая возможность связи по сетевой воде с соседним энергоблоком. Сетевая вода из обратной линии 1 посредством сетевого насоса первого подъема 2 прокачивается через сетевые подогреватели 3 w 4. Далее сетевым насосом II ступени подъема 5 сетевая вода прокачивается через пиковый водогрейный котел 6 и поступает в тепловую сеть. Предусмотрена рециркуляция сетевой воды насосом 116  [c.116] Пиковый водогрейный котел (ПВК) рабо тает в пиковом режиме при тепловых нагрузках от минимальной до номинальной, подогревая сетевую воду от 110 до 150"С. Поддержание на входе в ПВК температуры сетевой воды 110°С направлено на повышение температуры стенок трубок и тем самым на снижение низкотемпературной коррозии при работе на мазуте. Постоянная температура сетевой воды на входе 110°С при переменной и более низкой температуре ее после сетевых подогревателей достигается включением насоса рециркуляции, возвращающего часть воды после подогрева на вход в котел. Подмешивание горячей воды (150 С) к более холодной позволяет получить температуру 110°С.  [c.117]

Тепловая мощность блока (турбина + пиковый водогрейный котел) при расчетной  [c.89]

ПВК — пиковый водогрейный котел  [c.10]

Снабжение потребителей тепла осуществляется с помощью отборов пара из турбины подобно тому, как это делается для регенеративного подогрева питательной воды. Промышленный потребитель обычно использует пар непосредственно из отборов турбин. Для целей теплофикации пар из так называемых отопительных отборов турбины, расположенных на выходе из ЦСД-2, направляется в подогреватели сетевой воды (ПСВ), в трубках которых циркулирует сетевая (отопительная) вода, перекачиваемая сетевыми насосами. Подогреватели сетевой воды устанавливают на электростанции (обычно под турбиной). В очень холодное время, когда требуется повышенная температура сетевой воды, ее после ПСВ направляют в пиковый водогрейный котел (ПВК), а из него  [c.15]

Пиковый водогрейный котел 15  [c.536]

ИС и ВС сетевые подогреватели нижней и верхней ступени ПВК — пиковый водогрейный котел ТК — теплофикационный пучок конденсатора СН1 и СН2 — сетевые насосы КНС — конденсатный насос сетевых подогревателей.  [c.110]

Для обеспечения более высокой температуры нагрева сетевой воды в работу включается пиковый водогрейный котел. В случае, если турбина имеет конденсатор с встроенным теплофикационным пучком, последний может быть использован как первая ступень подогрева сетевой воды. Турбина при этом должна работать с ухудшенным вакуумом в конденсаторе.  [c.254]

Сетевая вода, поступающая в пиковые водогрейные котлы, обычно имеет температуру около 70 °С и подогревается в них до 150 °С. Ввиду отсутствия в водогрейном котле -парообразования он не является парогенератором, но в технологической схеме подогрева воды и происходящих при этом процессах, а в значительной мере и в конструкции водогрейный -котел имеет много общего с парогенератором. В нем, так же как и в -парогенераторе, топливо сжигается в топочной камере и выделенное тепло передается экранным и конвективным поверхностям нагрева, в которых вода подогревается до необходимой температуры. Продукты сгорания после утилизации удаляются через дымовую трубу в атмосферу. Дутьевой вентилятор обеспечивает подачу необходимого для горения воздуха. В зависимости от вида топлива применяют рассмотренные в гл. 4 методы подготовки его и подачи в топочную камеру, как и в парогенераторных установках.  [c.297]

Обследования пиковых водогрейных котлов, установленных на ТЭЦ, показали, что число часов работы котлов колеблется в широких пределах и доходит до 5100 ч в год. Температура воды на входе в котел очень редко достигает 104°С и колеблется в пределах 57—100° С. Температура воды на выходе редко достигала 150° С. Среднемесячная нагрузка водогрейных котлов, работающих как в пиковом, так и в основном режиме, не имеет пика нагрузки в холодные месяцы.  [c.205]

По сравнению с энергетическим паровым котлом высоких параметров с учетом вспомогательного оборудования и строительных работ водогрейный котел той же тепловой мощности стоит в несколько раз меньше. Снижение стоимости установленного 1 кет ТЭЦ с турбинами типа Т-50-130 приа,.зц=0,5 и применении пиковых водогрейных котлов достигает 15%.  [c.114]

I — паровой котел 950 т/ч 2 — пиковый водогрейный газомазутный котел 180 Гкал/ч-, 3 — турбина ПТ-200/240-240/13 с генератором 240 Мвт 4 — турбина Р-165-240/13 с генератором 165 Мвт.  [c.212]

Усовершенствование новых тепловых схем современных промышленно-отопительных ТЭЦ требует применения мощных теплофикационных блоков котел—турбина, одновременно с которыми должны сооружаться мощные резервные пиковые котельные, обеспечивающие кроме покрытия пиков отопительных нагрузок также резервирование отборов технологического пара из турбин и покрытие пиков этих нагрузок. Для этой цели в этих котельных необходимо устанавливать кроме водогрейных котлов типа КВ-ГМ-180 также крупные паровые котлы низкого давления. Однако в  [c.147]

Водогрейные котлы применяют для снабжения подогретой водой систем отопления и вентиляции, бытовых и технологических потребителей. Котлы устанавливают в промышленно-отопительных, котельных, а также на ТЭЦ для покрытия пиковых отопительно-вентиляционных нагрузок. Основная их особенность — работа при постоянном расходе сетевой воды и включении непосредственно в тепловую сеть. Нагрузка котлов регулируется изменением температуры входящей и выходящей воды путем изменения форсировки топки. Температура воды на входе в котел 70 °С (в пиковом режиме до 110 С), температура воды на выходе из котла — 150 °С и более (до 200 °С). Основные параметры и технические требования на котлы содержатся в ГОСТ 21563-93 [8] (табл. 1.62—1.63). Котлы предназначены для сжигания газа, мазута и твердого топлива. Для них установлена следующая шкала тепловых мощностей, МВт (Гкал/ч) 4,65 (4) 7,5 (6,5)  [c.105]

Водогрейные котлы, назначением которых является получение горячей воды заданных параметров, применяют для снабжения подогретой водой систем отопления и вентиляции, бытовых и технологических потребителей. Водогрейные стальные котлы, работающие обычно по прямоточному принципу с постоянным расходом воды, устанавливают в промышленно-отопительных котельных, а также на ТЭЦ для покрытия пиковых отопительно-вентиляционных нагрузок. Температура воды на входе в котел 70 °С (в пиковом режиме до 110°С), температура воды на выходе из котла—-150 °С и более (до 200 °С). В пароводогрейных котлах наряду с получением подогретой воды вырабатывается также технологический пар.  [c.333]

ЯМ — переключательная магистраль РОУ—редукционно-охладительная установка ППК — пиковый паровой котел ТП — к паровому потребителю ГВ —теплота е горячей водой ПС и ОС — подаюП(ая и обратная магистрали тепловой сети СП — сетевой подогреватель ПСП — пиковый сетевой подогреватель HI, С////— сетевые насосы I к II подъемов ЯД/С — пиковый водогрейный котел  [c.180]

Сетевая вода из магистрали обратной сетевой воды ТЭЦ сетевыми насосами I подъема H-I подается к нижнему сетевому подогревателю СП-1. В некоторых режимах ее предварительно можно подогреть в теплофикационном пучке конденсатора. После СП-1, если температура сетевой воды соответствует требованию температурного графика тепловой сети, она через байпасные линии сетевыми насосами II подъема СП-П направляется в напорную магистраль прямой сетевой воды ТЭЦ. Если меньше, чем требует температурный график сети, то сетевая вода подается в СП-2, обогреваемый паром с большим давлением и соответственно с более высокой температурой конденсации. В большинстве случаев сетевую воду в обоих сетевых подогревателях нагревают до 100—120 °С. Поэтому при необходимости иметь еще более высокую температуру сетевой воды, например, в очень холодное время, ее после двух сетевых подогревателей направляют в пиковый водогрейный котел (ПВК). В нем сжигается дополнительное топливо и вода нафевается до 140—200 °С в соответствии с потребностями конкретного теплового графика.  [c.208]

Трубная часть котла состоит из сварных змеевиковых 6. Пиковый водогрейный котел секции, подключенных к рас- ПТВМ-50-1  [c.15]

Я/( — котельный агрегат Яе — пароперегреватель котла 7 — турбина Г — генератор /С —конденсатор /СЯ — конденсатный насос ЯЭ — подогреватель эжекторной установки /tУ —подогреватель воды паролт из уплотнений Д —деаэратор Я,, Яз. Яе, Я — подогреватели высокого давления ОД охладитель дренажа ЛЯ — дренажный насос СЯ, н СЯа — сетевые подогреватели ДЯС — дренажный насос сетевой ЯЯ — питательный насос Пь Яе, Я — подогреватели низкого давления Я5/С — пиковый водогрейный котел СН и СЯг — сетевой насос О Г — отопительная тепловая нагрузка ОВ — обессоленная добавочная вода. 1—7 — регенеративные  [c.25]

Подогрев сетевой (теплофикационной) воды до 110—115°С производится в сетевых подогревателях СП1 и СП . В зимнее время для ПчОдогрева воды используется встроенный в конденсатор К отдельный пучо1К. При низиих наружных температурах, когда количества тепла, получаемого из теплофикационных отборов, недостаточно для подогрева сетевой воды до 150°С, включается в работу пиковый водогрейный котел ПВК. В летний период сетевая вода, идущая на горячее водоснабжение, подогревается только паром второго теплофикационного отбо(ра давлением 0,049—0,0147 МПа (0,5—1,5 кгс/см ).  [c.26]

Я/С —котлоагрегат ПТ — паровая турбина Г —электрический генератор Я, Я, Яз Я, Я П . Я, —подогреватели системы регенерации Л —деаэратор л — конденсатор ГЯ — потребитель тепла СПК —сетевая подогреватель в конденсаторе СП2 и СЯ/ —сетевые подогреватели ЯВЛГ—пиковый водогрейный котел КН ПН ДН СН Л СЯ —насосы конд >нсационный, питательный, дренажный, сетевой воды и конденсата сетевых подогревателей.  [c.245]

Пиковый водогрейный котел ПТВП-100 имеет натрубную облегченную обмуровку с применением стальных листов, непосредственно примыкающих к экранным трубам. Поверх листов укладываются 2 слоя минераловатных плит общей толщиной 100 мм и производится по металлической сетке магнезиальная обмазка. Общая толщина обмуровки 120 мм, вес 85 кг/м . Металлические листы являются достаточно надежными в длительной эксплуатации.  [c.320]

Рис. 49. Пиковый водогрейный теплофикационный котел типа ПТВМ-50-1 Рис. 49. Пиковый водогрейный теплофикационный котел типа ПТВМ-50-1
В пиковых водогрейных котлах сетевая вода обычно имеет температуру на входе около 70° С она подогревается до 150° С Ввиду отсутствия в водогрейном котле парообразования он не является парогенератором. Вместе с тем в технологической схеме подогрева воды, а в значительной мере и в конструкции и происходящих в нем процессов водогрейный котел имеет много общего с парогенерато-  [c.227]

Обследования пиковых водогрейных котлов, установленных на ТЭЦ, показали, что число часов работы колеблется в широких пределах и доходит до 5100 ч в год. Температура воды на входе в котел очень редко достигала 104 °С и колебалась в лределах 57—100 °С. Температура воды при выходе редко достигала 150 °С. Среднемесячная нагрузка водогрейных кот-  [c.223]

Пример расчета основных характеристик растопочного мазутного хозяйства ТЭС с дополнительными пиковыми водогрейными котлами. Исходные данные на Казанской ТЭЦ-2 установлено шесть котлов БКЗ-210, три котла СП-230, один котел СП-220, два котла ПТВМ-180.  [c.93]

I - - паровой котел 480 т ч-, 2 — пиковый водогрейный газомазутный котел 180 Гкал ч 3—турбина ПТ-75/90-130/13 [c.211]

В качестве основного оборудования в районных водогрейных котельных широко применяются газомазутные башенные водогрейные агрегаты типа ПТВМ (пиковый теплофикационный водогрейный мазутный котел) производительностью 58,116 и 210 ГДж/с (50, 100 и 180 Гкал/ч)—см. табл. 4,20-4.22 [7].  [c.357]

К схемам эксплуатационных промывок пиковых и водогрейных котлов предъявляются те же требования, что и к схемам для энергетических котлов минимальный объем монтируемых трубопроводов и врезок в котел, малая мощность насосов при условии обязательной выдержки необходимых скоростей, минимальный водяной объем схемы, свободное дренирование всех трубопроводов. Одновременное выполнение всех этих требований для существующих конструкций 1ПИК0ВЫХ и водогрейных котлов невозможно. Поэтому на практике используются три варианта схемы (рис. 2-12).  [c.36]

Обозначения ПТВМ — пиковый, теплофикационный, водогрейный, мазутный ТВГМ —теплофикационный, водогрейный, газомазутный КВ—ГМ —котел водогрейный, газомазутный КВ—ТС— котел водогрейный, теплофикационный, слоевой.  [c.421]

Примечания 1. КВ — котел водогрейный, ТС или ГМ — теплофикационный слоевой или на газе (мазуте), ПТВМ — пиковый, теплофикационный, водогрейный, мазутный число — тепловая про 13водительность — Гкал/ч.  [c.88]

mash-xxl.info

Котлы водогрейные пиковые - Энциклопедия по машиностроению XXL

Котлы водогрейные пиковые 226 Коэффициент абразивности 51  [c.237]

Обеспечение максимальной температуры 150" С легко достижимо как для квартальных и районных котельных, так и для ТЭЦ, на которых (см. 1-3) для этой цели устанавливаются либо пиковые водогрейные котлы, либо пиковые подогреватели. Чем выше максимальная температура подаваемой сетевой воды t, тем при неизменной температуре обратной воды /2 больше отдает тепла каждый килограмм сетевой воды. Так, при ii=9b° С и 2=70 С каждая тонна сетевой воды отдает только (95—70) 1 000 = 25000 ккал, а при ii = 150° и 2=70° С —уже 80 000 ккал, т. е. в 3,2 раза больше.  [c.71]

Тепловая мощность отборов турбины ТЭЦ рассчитывается на покрытие примерно постоянной составляющей нагрузки тепловых потребителей (пар для технологических нужд промышленных предприятий). Для сезонной или пиковой части тепловой нагрузки — отопление, вентиляция, бытовое горячее водоснабжение, зависящей от температуры атмосферного воздуха, использовался пар энергетических парогенераторов, которые по существу являлись резервными. С этой целью пар от резервных парогенераторов через РОУ подавался на пиковые подогреватели сетевой воды. Степень использования этих парогенераторов была крайне низкой. Кроме того, сооружение их, а также сооружение пиковых подогревателей, РОУ, трубопроводов и другого вспомогательного оборудования требовали больших капитальных затрат. Вместе с тем непосредственный подогрев воды для горячего водоснабжения при сжигании топлива без парообразования в парогенераторах и последующего дросселирования в РОУ и охлаждения в водоподогревателях проще и экономичнее. Подогрев сетевой воды осуществляют в водогрейных пиковых котлах, стоимость которых значительно ниже стоимости резервного парогенератора. Установка пиковых котлов на действующих ТЭЦ позволяет высвободить соответствующее количество пара от резервных парогенераторов высокого давления п использовать его в турбинах, т. е. увеличить электрическую мощность ТЭЦ без больших капитальных затрат. Вместе с тем пиковые водогрейные котлы, имеющие малую длительность кампании, будут рентабельны  [c.226]

Пиковые водогрейные котлы заменяют пиковые подогреватели сетевой воды, в связи с чем они должны иметь одинаковое подключение к тепловой сети. Поэтому водяной тракт пикового котла выполняют по прямоточной схеме вода прокачивается однократно сете-  [c.228]

При одинаковой температуре подогрева сетевой воды тепловая экономичность двухступенчатой схемы выше, чем одноступенчатой, но она сложнее и поэтому применяется в ПТУ мощностью не менее 50 МВт. Пиковые подогреватели используются лишь в качестве резервных [19]. Вместо них устанавливают пиковые водогрейные котлы. По тепловой экономичности этот вариант равноценен использованию пиковых сетевых подогревателей на редуцированном паре, но позволяет уменьшить паропроизводительность более сложных и дорогих энергетических котлов. Применение пиковых водогрейных котлов увеличивает номенклатуру устанавливаемого на ТЭЦ оборудования, что усложня-  [c.332]

Пиковые водогрейные котлы заменяют пиковые подогреватели сетевой воды, в связи с чем они должны иметь одинаковое подключение к тепловой сети. Поэтому водяной тракт пикового котла выполняют по прямоточной схеме вода прокачивается однократно сетевыми насосами, и гидравлическое сопротивление не должно превышать 100 кПа.  [c.298]

Для покрытия кратковременных пиков отопительно-вентиляционной нагрузки целесообразно устанавливать пиковые водогрейные котлы вместо пиковых сетевых подогревателей.  [c.159]

Использование паровых котлов низкого давления и водогрейных котлов взамен пиковых подогревателей  [c.140]

На рис. 6-9 показана схема включения пикового водогрейного котла вместо пикового подогревателя.  [c.141]

На раздельное подключение энергетических и пиковых котлов следует идти в случае, если совместное подключение не проходит по условиям обеспечения самотяги пиковых котлов. Для пиковых водогрейных котлов с дымососами это ограничение не распространяется.  [c.169]

Основные параметры водогрейных котлоагрегатов, установленные ГОСТ 21563-76 Котлы водогрейные. Основные параметры , приведены в табл. 9-2. Стандарт распространяется на стационарные прямоточные водогрейные котлоагрегаты с принудительной однократной циркуляцией теплопроизводительностью от 4 до 180 Гкал/ч и температурой воды на выходе из котлоагрегата от 150 до 200°С, предназначенные для работы в основном или пиковом режимах.  [c.127]

Применение водогрейных котлов вместо пиковых подогревателей сетевой воды. Для снижения стоимости сооружения ТЭЦ особенно широкое применение в последние годы получили водогрейные котлы большой единичной теплопроизводительности — от 50 до 180 Гкал/ч.  [c.187]

На рис. 11-19 дана схема включения пикового водогрейного котла вместо пикового подогревателя. Сетевой насос 3 подает охлажденную воду из отопительной системы 5 в основной подогреватель 1 для подогрева воды паром из отбора турбины до 105—110°С. Дальнейший подогрев с 105—ПО до 150°С осуществляется в пиковом водогрейном  [c.188]

Выработка теплоты водогрейным (пиковым) котлом, кДж/ч,  [c.354]

Определение дъ путем непосредственного измерения тепловых потоков с поверхности обмуровки связано с большими трудностями ввиду крайне неравномерного распределения температур окружающего воздуха в различных зонах вокруг обмуровки (из-за взаимного лучистого и конвективного теплообмена между основной поверхностью обмуровки и отдельными конструктивными элементами котла, наличия тепловых мостов и т. д.). Кроме того, поскольку значение дъ для котлов паропроизводительностью 700 т/ч и выше не превышает 0,2 % в условиях значительных габаритов (особенно по высоте), проведение экспериментального определения этих потерь нецелесообразно. Погрешность определения при этом может превышать значение дъ или быть ей равной. В значительной степени данное положение характерно и для котлов меньшей мощности. Проведение экспериментального определения д на водогрейных (пиковых) котлах, не имеющих воздухоподогревателей и соответствующих коробов подачи горячего воздуха, в значительной степени определяющих потери в окружающую среду, согласно данным [131] нецелесообразно. В связи с изложенным при типовых испытаниях значение дъ принимают по обобщенным кривым (рис. 14.2) при приемочных испытаниях метод определения дъ (экспериментально или по обобщенным кривым) оговаривают в соглашении. При пользовании этим графиком, построенным по  [c.358]

Использование дешевых, компактных транспортабельных паровых котлов, а также водогрейных котлов большой мощности позволяет с минимальными затратами на сооружение источника теплоты обеспечить теплоснабжение предприятий в тех местах, где ввод в действие ТЭЦ отстает по времени от ввода тепловых потребителей. После ввода в действие ТЭЦ эти водогрейные котлы используются для покрытия пиковой части тепловой нагрузки и резервирования теплоснабжения.  [c.254]

Способ нагрева воды выбирают в зависимости от схемы теплоснабжения и отопления. Вода может нагреваться в сетевых подогревателях, пиковых водогрейных котлах и конденсаторах турбин, работающих с ухудшенным вакуумом. Имеется опыт использования для подобных целей теплофикационных турбин с давлением пара 24 МПа.  [c.12]

Несоответствие располагаемой мощности пиковых водогрейных котлов номинальной при работе на мазуте  [c.91]

По расчетам института Теплоэлектропроект в десятой пятилетке наиболее целесообразно сооружать ТЭЦ единичной мощностью (электрической) от 460 до 1200 МВт с установкой различных теплофикационных агрегатов и пиковых водогрейных котлов. Соотношения мощностей ТЭЦ, устанавливаемого на них оборудования и удельных капитальных затрат видны из табл. 2-18.  [c.99]

Всего на ТЭЦ, использующих органическое топливо, за одиннадцатую пятилетку намечается ввести в действие более 15 млн. кВт, из них на Урале и в восточных районах около 6,0 млн. кВт. Как правило, вводимая мощность на ТЭЦ будет обеспечиваться необходимым количеством пиковых водогрейных котлов.  [c.127]

Д01 —21° С 150 ч). В силу этого от водогрейных котлов, которые включаются в работу лишь после полного использования тепловой мощности отборов, обычно отпускается 15—20% всего годового отпуска тепла от ТЭЦ. Водогрейные котлы поэтому получили название пиковых. Взамен этого почти вдвое за год увеличивается использование тепловой мощности отборов, что значительно повышает экономичность работы ТЭЦ.  [c.57]

Приготовление больших количеств подпиточной воды такого высокого качества на ТЭЦ или в котельной естественно представляет определенные трудности. Эти затруднения особенно резко возрастают в том случае, если подпиточную воду необходимо подвергать умягчению с целью из бежать выпадения накипи в пароводяных подогревателях или в пиковых водогрейных котлах.  [c.66]

Повышенные требования к подпиточной воде для систем теплоснабжения с пиковыми водогрейными котлами объясняются тем, что температура нагрева трубок в котлах более высокая (обогрев пламенем), чем в пароводяных подогревателях.  [c.99]

Значительные районы страны с относительно ограниченными тепловыми нагрузками (промышленностью и жилищно-коммунальным хозяйством), не попадающие в зону обслуживания ТЭЦ, снабжаются в настоящее время теплотой от центральных районных котельных, оборудованных водогрейными и паровыми котлами. Для теплоснабжения этих районов допускается сооружение отдельных котельных тепло-производительностью до 150 Гкал/ч в европейской и 300 Гкал/ч в азиатской части СССР. Поэтому в теплоснабжении страны крупные прямоточные водогрейные котлы и паровые барабанные котлы низкого давления играют и будут играть в дальнейшем весьма значительную роль, выдавая более 50% всей потребляемой в стране теплоты (с учетом пиковых водогрейных котлов). В связи с этим вопросы усовершенствования, т. е. улучшения конструкции паровых и водогрейных котлов, повышение их экономичности и уменьшение металлоемкости имеют огромное народнохозяйственное значение.  [c.5]

Широкое применение водогрейных котлов на электростанциях и в районных отопительных котельных значительно облегчило задачу теплоснабжения теплом интенсивно растущих новых жилых застроек и промышленных предприятий. Непосредственный подогрев сетевой воды в водогрейных котлах упрощает схему котельной, удешевляет стоимость и эксплуатацию ее. Существующие водогрейные котлы рассчитывались на подогрев воды от 70 до 150°С и удовлетворяли наиболее распространенному температурному графику работы теплофикационной системы. В настоящее время имеется тенденция к повышению начальной температуры воды в тепловых сетях до 180—200°С. Подогрев воды от 70°С до конечной температуры производится в тех случаях, когда котлы являются основным источником теплоснабжения. В условиях ТЭЦ, когда первоначальный подогрев осуществляется в основных подогревателях за счет отборного пара турбин, пиковые водогрейные котлы предназначаются для догрева теплофикационной воды сверх той температуры, которую в состоянии обеспечить основные подогреватели. Согласно действующим нормам технологического проектирования ТЭЦ состав основного оборудования ТЭЦ и его загрузка выбираются исходя из коэффициента теплофикации а ц =0,5.  [c.18]

Схемы движения воды в водогрейном котле КВ-ТС-50 при основном и пиковом режиме работы показаны на рис. 2.26. Скорость движения воды в различных поверхностях нагрева этого котла колеблется от 1,0 до 2,4 м/с.  [c.43]

При работе котла в качестве водогрейного он должен допускать работу как в пиковом, так и в основном режиме.  [c.99]

Усовершенствование новых тепловых схем современных промышленно-отопительных ТЭЦ требует применения мощных теплофикационных блоков котел—турбина, одновременно с которыми должны сооружаться мощные резервные пиковые котельные, обеспечивающие кроме покрытия пиков отопительных нагрузок также резервирование отборов технологического пара из турбин и покрытие пиков этих нагрузок. Для этой цели в этих котельных необходимо устанавливать кроме водогрейных котлов типа КВ-ГМ-180 также крупные паровые котлы низкого давления. Однако в  [c.147]

ВИЯМИ для решения этой задачи являются наличие энергетических котлов, соответствующих пропускной способности турбин, и возможность обеспечения примерно постоянной загрузки блока. Такой режим работы обеспечивается при условии введения в состав ТЭЦ пиково-резервной котельной с применением в ней крупных водогрейных и паровых котлов низкого давления. Такое решение обеспечивает возможность выбора оборудования при оптимальных коэффициентах теплофикации и набора тепловых нагрузок до ввода первых агрегатов на ТЭЦ и, тем самым, стабильность тепловой нагрузки блоков на протяжении отопительного периода.  [c.202]

В настоящее время трест Центроэнергомонтаж разрабатывает серию унифицированных газомазутных водогрейных котлов производительностью 20, 30 и 50 Гкал/ч. Котлы могут работать как по основному отопительному режиму с подогревом воды от 70 до 150° С, так и по пиковому режиму с подогревом воды от 110 до 150° С.  [c.14]

Жирнов Н. И. и др. Пиковые водогрейные котлы большой мощности. Изд-во Энергия , 1964.  [c.191]

В водогрейных котлах высокой производительности и в экспериментальных котлах малой производительности применяются вихревые газомазутные горелки. На рис. 31 приведена горелка водогрейного пикового котла ПТВМ-50, снабженная лопаточным закручнвателем. Подача газа — периферийная. Скорость газа на выходе из сопел — 120— 150 м/сек, скорость воздуха в амбразуре 22—26 м/сек [10]. Благодаря периферийному расположению газовой камеры, нагрев ее излучением можно уменьшить при помощи выключения части горелок. i Вихревые горелки обеспечивают хорошее качество горения с з котлов типа ПТВМ и других на достаточном расстоянии одну от другой, можно достичь требуемой равномерности распределения тепловых потоков в топке. Если же расположить две-три горелки почти вплотную на фронтовой стенке котла малой производительности, то тепловые нагрузки будут распределяться очень неравномерно, в результате чего возникнут трудности при регулировании работы горелок. При расположении горелок на противоположных стенках в топках малых размеров часто наблюдается сгорание горелок и вибрации. Хорошие характеристики работы у вихревых горелок, установленных в топках котлов большой производительности.  [c.62]

Развитие в СССР теплофикации потребовало разработки специальных стальных водогрейных котлов очень большой теплопроизводительности. Такие котлы предложень М. А. Стыриковичем для установки на ТЭЦ и работы в пиковом режиме в течение примерно 1000 ч в год. Для установки на ТЭЦ эти котлы должны быть просты, дешевы и не требовать высокой квалификации обслуживающего персонала.  [c.182]

Мет, для подогрева воды с давлением не выше 300—400 кн1м до температуры 115° С. Вторые выполняют на большие теплопроизводительности от 4,75 до 210 Мет и устанавливают в крупных квартальных и районных котельных для теплоснабжения больших жилых массивов. Кроме того, водогрейные котлы теплопроизводительностью 35 Мет и выше устанавливают также на ТЭЦ взамен пиковых подогревателей сетевой воды.  [c.286]

С целью дальнейшей экономии органического топлива систематически проводились и будут проводиться традиционные мероприятия, направленные на развитие централизованного теплоснабжения потребителей как наиболее рационального. Вводятся новые мощности на ТЭЦ, применяются более современные и крупные теплофикационные турбины и более соверщенные пиковые водогрейные котлы и начата разработка крупных паровых котлов. В одиннадцатой пятилетке будут вестись работы по созданию котлов производительностью 800 т/ч для канско-ачииских и экибастузских углей. Намечен ввод головного образца малогабаритного котла с циклонной топкой на твердом топливе.  [c.130]

Карбонатная жесткость подпиточной воды при наличии в системе теплоснабжения пиковых водогрейных котлов не должна превышать 400 мкг-экв1л. При отсутствии пиковых водогрейных котлов остаточная карбонатная жесткость в подпиточной воде допускается до 700 мкг-экв1л.  [c.99]

По ПТЭ содержание кислорода в подпиточной воде должно быть не более 100 мкг1л, а для систем теплоснабжения с пиковыми водогрейными котлами не более 50 мкг1л. При наличии пиковых котлов присутствие свободной углекислоты не допускается. При отсутствии— свободная углекислота не нормируется.  [c.100]

При Na-катионировании в воде, после прохождения ее через фильтры, образуется карбонат натрия, который при высоких температурах распадается на едкий натр и углекислоту, вызывающие коррозию металла. По указанной причине На-катионпрование воды применяют только в системах теплоснабжения, не имеющих пиковых водогрейных котлов.  [c.103]

Все современные ТЭЦ высокого давления, так же как и вновь проектируемые атомные ТЭЦ (АТЭЦ), для покрытия максимальных тепловых отопительных нагрузок снабжаются крупными пиковыми водогрейными котлами. Обычно коэффициенты теплофикации на таких ТЭЦ по отопительной теплофикационной нагрузке не превышают ат = 0,54-0,55, а по промышленным отборам Сп= = 0,8- 0,9. Дальнейшее повышение экономичности и эффективности  [c.3]

Комбинированные агрегаты, создаваемые на базе серийных водогрейных котлов типа КВ-ГМ-ЮО, предназначаются в основном для работы в качестве пиковых котлов для отопительных и промышленноотопительных ТЭЦ. При условии обеспечения возможности достаточно глубокой регулировки паровой и водогрейной нагрузок эти комбинированные котлы с успехом могут применяться на ТЭЦ также вместо пусковых паровых котлов низкого давления, что значительно упростит и удешевит постройку таких ТЭЦ, так как отпадает необходимость постройки специальных пусковых котельных.  [c.119]

Таким образом, переход науста-нов ку S пиковых 1Котелыных ТЭЦ и централизованных котельных комбинированных котлов взамен специализированных водогрейных и паровых обеспечивает весьма существенную экономию металла.  [c.203]

Развитие централизованного теплоснабжения в крупных городах страны привело к созданию типовых районных котельных с пиковыми водогрейными котлами ПТВМ конструкции ВТИ им. Ф. Э. Дзержинского производительностью 50 Гкал1ч. Такие котельные, получившие название районные тепловые станции (РТС), работают на природном газе с мазутным резервом и оснащены современным высокоэкономичным технологическим оборудованием, автоматическими устройствами контроля, сигнализации, защиты, управления и регулирования.  [c.5]

mash-xxl.info

Выбор пиковых водогрейных котлов

Требуемая тепловая мощность пиковых водогрейных котлов:

(2.1)

На станционный коллектор 13 ата пар подается из турбины Р-50-130/13 и отборов турбин ПТ-80/100-130/13. Из коллектора 13 ата питаются пиковые бойлера, покрывающие пиковые тепловые нагрузки.

Суммарная мощность пиковых бойлеров, питающихся от турбин ПТ-80/100-130 (Qптпб = 151,2 МВт) и Р-50-130 (QРпб = 267,5 МВт), равна:

SQпб=SQптпб + SQрпб = 3·151,2 + 267,5 = 721,1 МВт (2.2)

Тогда оставшаяся требуемая тепловая мощность пиковых водогрейных котлов:

Согласно данным приложения Г из [11] к установке выбираем два водогрейных котла типа КВ-ГМ-210, тепловая мощность каждого из которых равна Qкв-гм = 244 МВт.

Суммарная тепловая мощность:

Выбор энергетических котлов

Количество и единичная мощность устанавливаемых котлов зависит от суммарных тепловых нагрузок ТЭЦ и режима отпуска тепла, и определяется режимом потребления тепла отдельными потребителями.

Максимальный расход пара на все паровые турбины:

т/ч

Тогда суммарная производительность паровых энергетических котлов:

т/ч, (2.3)

где α =0,03 - доля запаса по паропроизводительности котла;

β = 0,02 - доля расхода пара на собственные нужды.

На ТЭЦ-2функционируют семь котлов типа БКЗ-420-140-7с с суммарной паровой производительностью Dка = 7·420 = 2940 т/ч. Выбираем еще по каждому котлу типов Е-420-13,8-560КТ и Е-550-13,8-560КТ.

Проверка правильности выбора паровой производительности котлов производится при выходе из строя одного парового котла. При выходе из строя одного котла (учитываем котёл Е-550-13,8) паровая производительность оставшихся в работе восьми котлов равна Dка= 3360 т/ч.

Из этого количества паранеобходимо:

- 1350 т/ч для турбин типа ПТ-80/100;

- 970 т/ч для турбин типа Т-110/120-130,

- 656 т/ч на турбину Т-180/210-130;

- 67 т/ч на собственные нужды (что составляет 2% от Dка= 3360 т/ч)

Оставшееся количество пара Dт = 3360 – 1350 – 970 – 67 – 656 = 317 т/чпойдет на последнюю турбину Т-180/210-130. Тепловая мощность турбины Т-110/120-130 примерно составит:

(2.4)

Суммарная тепловая мощность ТЭЦ при выходе из строя одного котла:

Qт = Qптотб + Qтотб + Qпвк = 3·82+2·204+280+135,3+1209,1 = 2278,4 МВт.

Из расчетов видно, что при выходе из строя одного котла, оставшиеся в работе обеспечат 100% паровую и более чем 70% теплофикационную нагрузки.

На ТЭЦ-2 для резервирования коллектора 13 ата на случай остановки одной из турбин имеется система РОУ-140/13, два по 150 т/ч и одна 250 т/ч.

Котел Е-420-13,8-560КТ (БКЗ-420-140-7СА)

Котел Е-420-13.8-560КТ (БКЗ–420-140-7СА) однобарабанный, вертикально-водотрубный с естественной циркуляцией, газоплотный с мембранными экранами, предназначенный для получения пара высокого давления.

Топка, горизонтальный газоход и верхняя часть опускного газохода (до 2-ой ступени трубчатого воздухоподогревателя) экранированы газоплотными панелями. Полная газоплотность топки и газоходов котла (мембранные панели, специальная конструкция мест прохода змеевиков и труб и конструкция гарнитуры) обеспечивает возможность работы котла без присосов воздуха, что позволяет повысить КПД котла и понизить затраты электроэнергии на собственные нужды.

Компоновка котла выполнена по П-образной схеме. Топка, экранированная испарительными панелями, является первым (подъемным) газоходом. В верхней части топки располагается ширмовый пароперегреватель

Во втором (горизонтальном) газоходе расположены три ступени конвективного пароперегревателя, в опускном газоходе (конвективная шахта) - II ступень экономайзера, II ступень ТВП, экономайзер I ступени и I ступень ТВП. Технические характеристики котла Е-420-13,8-560КТ при сжигании экибастузского угля приведена в таблице 2.2.

 

Таблица 2.2

Наименование Величина
1. Паропроизводительность, т/ч
2. Температура перегретого пара, оС
3. Давление перегретого пара, кгс/см2
4. Температура питательной воды, оС
5. КПД котла (расчетный), % 91,5
6. Выбросы окислов азота при a=1,4; мг/нм3 £570

Режим работы котла базовый. Нижний предел регулировочного диапазона по отношению к номинальной производительности – 60%.

Для организации топочного процесса на фронтовой стене топки в два яруса устанавливаются шесть вихревых двухпоточных (по воздуху и пылевоздушной смеси) горелок и в нижней части топки сопла нижнего дутья, которые обеспечивают ступенчатое сжигание топлива за счет подачи части горячего воздуха в холодную воронку. Сопла нижнего дутья, расположены по встречно-смещенной cxеме на скатах холодной воронки под утлом 15° к горизонтали. За счет ступенчатого сжигания обеспечивается снижение выбросов оксидов азота.

Применение системы нижнего дутья, кроме снижения выбросов оксидов азота, способствует также:

- снижению температуры газов на выходе из топки за счет смещения ядра факела вниз топки и увеличения тепловосприятия экранов;

- повышению экономичности котла за счет уменьшения потерь тепла с механическим недожогом (уменьшения провала).

Предлагаемое топочно-горелочное устройство обеспечит устойчивое, в широком диапазоне нагрузок горение топлива; высокую экономичность и нормативные выбросы окислов азота (£570 мг/нм3 при a=1,4 при сжигании Экибастузского каменного угля).

Возможно более глубокое снижение выбросов оксидов азота за счет применения на котле двухвихревой схемы сжигания с прямоточными горелками и системой нижнего дутья, однако это решение требует более глубокой проработки из-за стесненных условий для установки горелок на задней стене топки. Окончательное решение будет принято при разработке проекта.

Для обеспечения растопки котла все пылеугсльные горелки оборудованы механическими форсунками и запально-сигнализирующими устройствами типа ЗСУ-ПИ-45.

Регулирование температуры пара в период эксплуатации осуществляется впрыском собственного конденсата в пароохладителях первой и второй ступени.

Конструкция каркаса котла пространственная, ужесточена ригелями, силовыми площадками и раскосами. Площадки и помосты котла изготавливаются из просечно-вытяжного листа. Каркас рассчитан на восприятие сейсмонагрузок – 10 баллов.

Для удаления шлака, выпадающего в холодную воронку, применяется установка непрерывного механизированного шлакоудаления.

Система пылеприготовления котла принята индивидуальная прямого вдувания с четырьмя молотковыми мельницами типа ММТ 2000/2590/730 К и четырьмя вентиляторами горячего дутья типа ВГДН-15.

Тягодутьевое оборудование принято по предварительным оценкам с последующим уточнением при разработке рабочего проекта и согласованию с Заказчиком:

• дутьевой вентилятор ДН-26Ф, n=745 об/мин. – 2 шт.;

• дымосос ДН 26х2 – 0,62, n=745 об/мин – 2 шт.

Подогрев воздуха перед воздухоподогревателем осуществляется до +75оС за счет установки водяных калориферов типа СВ-80 в количестве 40 шт. Забор 100% воздуха с температурой +30оС производится из котельного помещения.

 

Котел Е-550-13,8-560КТ

Паровой котел Е-550-13,8-560КТ однобарабанный, вертикально-водотрубный с естественной циркуляцией, в газоплотном исполнении, Т-образной компоновки с уравновешенной тягой предназначен для получения пара высокого давления при сжигании Экибастузского каменного угля, с твердым шлакоудалением.

Топка, экранированная газоплотными испарительными панелями, является первым (подъемным) газоходом. В верхней части топки, экранированной газоплотными перегревательными панелями, установлены ширмы. В двух опускных газоходах установлены поверхности нагрева конвективного пароперегревателя и второй ступени экономайзера. В вынесенной конвективной шахте размещены вторая ступень экономайзера и трубчатый воздухоподогреватель. Поверхности нагрева экономайзера и трубчатого воздухоподогревателя расположены в «рассечку».

Газоплотные панели обеспечивают полное отсутствие присоса в топку и газоходы наружного воздуха, благодаря чему уменьшаются потери тепла с уходящими газами и расход электроэнергии на привод дымососов.

Техническая характеристика котла Е-550-13,8-560КТ угля приведена в таблице 2.3.

 

Таблица 2 .3

Наименование Величина
1. Номинальная паропроизводительность, т/ч
2. Номинальное давление пара, МПа (кгс/см2) 13,8 (140)
3. Номинальная температура пара, оС
4. Номинальная температура питательной воды, оС
5. КПД котла, %
6. Выбросы оксидов азота при a=1,4 мг/нм3 £570

 

Режим нагрузок котла базовый. Нижний предел регулировочного диапазона по отношению к номинальной производительности – 60%.

Для организации топочного процесса топка оборудована восьмью сдвоенными прямоточными пылеугольными горелками, размещенными в один ярус и соплами нижнего дутья.Для проведения растопки котла на мазутепредусмотрена установка растопочных вихревых мазутных горелок с индивидуальным подводом воздуха.Все растопочные горелки оборудованы запально-сигнализирующими устройствами пневматическими инжекционньми типа ЗСУ-ПИ-45.

Топливом для ЗСУ-ПИ является пропан-бутановая смесь.

Для обеспечения нормативных выбросов оксидов азота (NOX£570г/нм'3 при a=1,4) на котле предусмотрено ступенчатое сжигание топлива за счет подачи части горячего воздуха в холодную воронку через сопла нижнего дутья, расположенные по встречно-смещенной схеме на скатах холодной воронки под углом 15° к горизонтали. Кроме того, применение системы нижнего дутья способствует уменьшению провала и увеличивает диапазон устойчивости сжигания пылеугольного топлива без подсветки факела мазутом.

Регулирование температуры пара в период эксплуатации осуществляется впрыском «собственного» конденсата во впрыскивающие пароохладители.

На котле применена однониточная схема питания. Узел питания состоит из основной питательной линии с регулирующим клапаном условного диаметра Ду250 мм и двух байпасов с регулирующими клапанами условных диаметров Ду100мм и Ду65мм.

Опыт эксплуатации котлов, сжигающих Экибастузский уголь, показал что очистка топочной камеры и поверхностей нагрева не требуется.

Для удаления шлака, выпадающего в холодную воронку, применяется установка непрерывного механизированного шлакоудаления.

Конструкция каркаса котла пространственная, ужесточена ригелями, силовыми площадками и раскосами. Площадки и помосты котла изготавливаются из просечно-вытяжного листа. каркас рассчитан на восприятие сейсмонагрузок 10 балллов.

Площадки обслуживания котла в районе растопочных горелок, снабженных форсунками жидкого топлива, ремонтных лазов, а также расширенные ремонтные площадки имеют покрытие из рифленой листовой стали.

Принята индивидуальная система пылеприготовления прямого вдувания с четырьмя молотковыми мельницами типа ММТ 2000/2590/750К и 4 вентиляторами горячего дутья типа ВГДН-17БФК с электродвигателем типа ДАЗО4-400Х-4У1 (мощность 400кВт, напряжение 6000В).

Тягодутьевое оборудование принято по предварительным оценкам с последующим уточнением при разработке рабочего проекта и согласованию с Заказчиком.

 

Котел Е-550-13,8-560 КТ комплектуется следующим тягодутьевым оборудованием:

· Дутьевой вентилятор ВДН-28К с электродвигателем типа ДАЗО4-560УК-8У1 (мощность 800кВт, напряжение 6000В) - 2шт.

· Дымосос ДН-26х2-0,62ПК с электродвигателем типа ДАЗО4-560У-8У1 (мощность 1000кВт, напряжение 6000В) – 2 шт.

Для подогрева воздуха до +75 °С перед воздухоподогревателем применяются водяные калориферы типа СВ-80 - 48 шт. Забор 100% воздуха производится из котельного помещения с температурой +30°С.



infopedia.su

Котлы пиковые - Энциклопедия по машиностроению XXL

Основные подогреватели сетевой воды на ТЭЦ устанавливают индивидуально у каждой турбины без резерва, и общая паровая магистраль 0,12 МПа не предусматривается. При установке на ТЭЦ пиковых водогрейны.ч котлов пиковые подогреватели сетевой воды, как правило, не устанавливаются.  [c.133]

Под маневренностью понимается способность ТЭС (котлов, турбоустановок) быстро набирать нагрузку, быстро увеличивать выработку электроэнергии, что бывает необходимо в моменты наибольшего (пикового) потребления энергии предприятиями и населением. При этом котел и турбину часто приходится пускать из холодного состояния. Ввод турбины в работу и набор нагрузки возможны только после прогрева ее до температуры пара. Быстро обеспечить равномерный прогрев массивных фасонных элементов паровой турбины, работающей под высоким давлением пара, невозможно, т. е. невозможен и быстрый пуск мощной паровой турбины из холодного состояния.  [c.218]

Использование дешевых, компактных транспортабельных паровых котлов, а также водогрейных котлов большой мощности позволяет с минимальными затратами на сооружение источника теплоты обеспечить теплоснабжение предприятий в тех местах, где ввод в действие ТЭЦ отстает по времени от ввода тепловых потребителей. После ввода в действие ТЭЦ эти водогрейные котлы используются для покрытия пиковой части тепловой нагрузки и резервирования теплоснабжения.  [c.254]

Способ нагрева воды выбирают в зависимости от схемы теплоснабжения и отопления. Вода может нагреваться в сетевых подогревателях, пиковых водогрейных котлах и конденсаторах турбин, работающих с ухудшенным вакуумом. Имеется опыт использования для подобных целей теплофикационных турбин с давлением пара 24 МПа.  [c.12]

Несоответствие располагаемой мощности пиковых водогрейных котлов номинальной при работе на мазуте  [c.91]

Пиковые котлы, Гкал/ч ЗХ 180 4Х 180  [c.98]

По расчетам института Теплоэлектропроект в десятой пятилетке наиболее целесообразно сооружать ТЭЦ единичной мощностью (электрической) от 460 до 1200 МВт с установкой различных теплофикационных агрегатов и пиковых водогрейных котлов. Соотношения мощностей ТЭЦ, устанавливаемого на них оборудования и удельных капитальных затрат видны из табл. 2-18.  [c.99]

Всего на ТЭЦ, использующих органическое топливо, за одиннадцатую пятилетку намечается ввести в действие более 15 млн. кВт, из них на Урале и в восточных районах около 6,0 млн. кВт. Как правило, вводимая мощность на ТЭЦ будет обеспечиваться необходимым количеством пиковых водогрейных котлов.  [c.127]

Пиковые и полупиковые электростанции. В отдельных объединенных энергосистемах — Северо-Запада, Юга и Центра с наиболее неравномерными графиками нагрузок — требуется для обеспечения пиковых нагрузок применять энергетическое оборудование, обеспечивающее быстрый набор нагрузки и достаточно экономичную кратковременную работу в часы прохождения утренних и вечерних максимальных нагрузок. К таким мобильным установкам помимо гидравлических и гидроаккумулирующих электростанций, как известно, относятся газотурбинные установки, работающие па газе или специальном жидком топливе, и парогазовые установки. К концу 1980 г. в работе находилось пять газотурбинных установок (ГТУ) мощностью по 100 МВт каждая и две парогазовые установки (ПГУ), из которых одна работает по схеме сброса отработанных газов от ГТУ мощностью по 40 МВт в топку котла энергоблока мощностью 210 МВт.  [c.133]

Количество отходов, поступающих в промышленную мусоросжигательную установку, обычно гораздо меньше, чем поступающих в муниципальную установку обычно — это 10 т/сут. Во многих случаях полезное тепло вырабатывается путем сжигания отходов в топке котла, рассчитанной именно на этот вид топлива или на два вида топлива, при этом вторым видом может быть газ, мазут или уголь. Сжигание отходов может стать эффективным методом получения теплоты в периоды пиковых тепловых нагрузок эта теплота используется, как правило, для подогрева питательной воды котла.  [c.109]

Д01 —21° С 150 ч). В силу этого от водогрейных котлов, которые включаются в работу лишь после полного использования тепловой мощности отборов, обычно отпускается 15—20% всего годового отпуска тепла от ТЭЦ. Водогрейные котлы поэтому получили название пиковых. Взамен этого почти вдвое за год увеличивается использование тепловой мощности отборов, что значительно повышает экономичность работы ТЭЦ.  [c.57]

Пиковый Подогреватель 12 работает на паре 5—7 ат. получаемым путем редуцирования (дросселирования) пара из котла /. Для этого устанавливается редуктор 18. Конденсат из пикового подогревателя 12 сливается в основной подогреватель II, из основного подогревателя — в деаэратор 8.  [c.58]

Приготовление больших количеств подпиточной воды такого высокого качества на ТЭЦ или в котельной естественно представляет определенные трудности. Эти затруднения особенно резко возрастают в том случае, если подпиточную воду необходимо подвергать умягчению с целью из бежать выпадения накипи в пароводяных подогревателях или в пиковых водогрейных котлах.  [c.66]

Обеспечение максимальной температуры 150" С легко достижимо как для квартальных и районных котельных, так и для ТЭЦ, на которых (см. 1-3) для этой цели устанавливаются либо пиковые водогрейные котлы, либо пиковые подогреватели. Чем выше максимальная температура подаваемой сетевой воды t, тем при неизменной температуре обратной воды /2 больше отдает тепла каждый килограмм сетевой воды. Так, при ii=9b° С и 2=70 С каждая тонна сетевой воды отдает только (95—70) 1 000 = 25000 ккал, а при ii = 150° и 2=70° С —уже 80 000 ккал, т. е. в 3,2 раза больше.  [c.71]

Повышенные требования к подпиточной воде для систем теплоснабжения с пиковыми водогрейными котлами объясняются тем, что температура нагрева трубок в котлах более высокая (обогрев пламенем), чем в пароводяных подогревателях.  [c.99]

Для уменьшения эрозии труб скорость газов в конвективной шахте принята 9 м/с. Предполагается, что котел будет использован в качестве пикового из-за хороших маневренных характеристик. После 9 ч простоя котел сможет набрать полную нагрузку за 1 ч 45 мин, а после 40 ч - за 2 ч 45 мин, т.е. быстрее, чем на существующем мазутном котле.  [c.238]

На рис. 1-2 приведена тепловая схема комбинированной промышленно-отопительной котельной с паровыми котлами и подогревателями при непосредственном разборе горячей воды из сети. В этой схеме сетевой насос 1 последовательно прокачивает воду через основной бойлер 2, пиковый бойлер 3 и выдает ее в отопительные приборы потребителей 4 или в краны непосредственного разбора воды 5. Паровой котел 6 снабжает потребителей 7 и пиковый бойлер насыщенным паром, а через РОУ 8 обеспечивает дросселированным и увлажненным паром основной подогреватель. Питание котла питательным насосом 10 осуществляется смесью химически обработанной воды с конденсатом подогревателей из деаэратора 9. Добавочная вода, подаваемая насосом 16, приготовляется на двухфазной водоочистке первая фаза И выдает воду, по качеству необходимую для теплосети вторая фаза 12 доводит ее качество до требований к питательной воде котлов.  [c.9]

Подпитка теплосети осуществляется из деаэратора 13 насосом 14. Насос 15, возвращая конденсат бойлеров на питание котлов, одновременно обеспечивает работу впрыскивающего устройства РОУ 8, которое выдает пар для основных подогревателей и деаэраторов. В организации нормального режима эксплуатации наибольшие трудности создает пиковый характер потребления горячей воды в течение суток. Для сглаживания пика схемы дополняют установкой буферных баков горячей воды.  [c.9]

Значительные районы страны с относительно ограниченными тепловыми нагрузками (промышленностью и жилищно-коммунальным хозяйством), не попадающие в зону обслуживания ТЭЦ, снабжаются в настоящее время теплотой от центральных районных котельных, оборудованных водогрейными и паровыми котлами. Для теплоснабжения этих районов допускается сооружение отдельных котельных тепло-производительностью до 150 Гкал/ч в европейской и 300 Гкал/ч в азиатской части СССР. Поэтому в теплоснабжении страны крупные прямоточные водогрейные котлы и паровые барабанные котлы низкого давления играют и будут играть в дальнейшем весьма значительную роль, выдавая более 50% всей потребляемой в стране теплоты (с учетом пиковых водогрейных котлов). В связи с этим вопросы усовершенствования, т. е. улучшения конструкции паровых и водогрейных котлов, повышение их экономичности и уменьшение металлоемкости имеют огромное народнохозяйственное значение.  [c.5]

Широкое применение водогрейных котлов на электростанциях и в районных отопительных котельных значительно облегчило задачу теплоснабжения теплом интенсивно растущих новых жилых застроек и промышленных предприятий. Непосредственный подогрев сетевой воды в водогрейных котлах упрощает схему котельной, удешевляет стоимость и эксплуатацию ее. Существующие водогрейные котлы рассчитывались на подогрев воды от 70 до 150°С и удовлетворяли наиболее распространенному температурному графику работы теплофикационной системы. В настоящее время имеется тенденция к повышению начальной температуры воды в тепловых сетях до 180—200°С. Подогрев воды от 70°С до конечной температуры производится в тех случаях, когда котлы являются основным источником теплоснабжения. В условиях ТЭЦ, когда первоначальный подогрев осуществляется в основных подогревателях за счет отборного пара турбин, пиковые водогрейные котлы предназначаются для догрева теплофикационной воды сверх той температуры, которую в состоянии обеспечить основные подогреватели. Согласно действующим нормам технологического проектирования ТЭЦ состав основного оборудования ТЭЦ и его загрузка выбираются исходя из коэффициента теплофикации а ц =0,5.  [c.18]

На рис. 2.15 приведены схемы движения воды в котле КВ-ГМ-50 в основном и пиковом режимах работы.  [c.33]

На рис. 2.17 изображены циркуляционные схемы котла КВ-ГМ-100 для основного и пикового режимов работы.  [c.36]

Рис. 2.20. Схема движения воды в котле КВ-ГМ-180 при работе в пиковом режиме (обозначения см. на рис. 2.19). Рис. 2.20. <a href="/info/432231">Схема движения</a> воды в котле КВ-ГМ-180 при работе в пиковом режиме (обозначения см. на рис. 2.19).
Схемы движения сетевой воды в контуре котла КВ-ТК-ЮО при работе его как в основном, так и в пиковом режиме приведены на рис. 2.24. Котлы типов КВ-ТК-50 и КВ-ТК-100 выполнены, так же как и котел КВ-ГМ-180, с учетом возможности работы под наддувом.,  [c.43]

Схемы движения воды в водогрейном котле КВ-ТС-50 при основном и пиковом режиме работы показаны на рис. 2.26. Скорость движения воды в различных поверхностях нагрева этого котла колеблется от 1,0 до 2,4 м/с.  [c.43]

При работе котла в качестве водогрейного он должен допускать работу как в пиковом, так и в основном режиме.  [c.99]

При наличии на ТЭЦ пиковых водогрейных котлов пиковые поде греватели сетевой воды не устанавливаются. Подогрев сетевой вод в основных сетевых подогревателях выполняется преимушественн в двух ступенях с обеспечещ1ем одинакового расхода сетевой воды чере подогреватели обеих ступеней.  [c.122]

Развитие в СССР теплофикации потребовало разработки специальных стальных водогрейных котлов очень большой теплопроизводительности. Такие котлы предложень М. А. Стыриковичем для установки на ТЭЦ и работы в пиковом режиме в течение примерно 1000 ч в год. Для установки на ТЭЦ эти котлы должны быть просты, дешевы и не требовать высокой квалификации обслуживающего персонала.  [c.182]

Котел имеет автоматическое регулирование процесса горения и может работать в пиковом и Рис. 6-13. Общий вид башенного котла ОСНОВНОМ режимах. У КОТЛОВ ба-ПТВМ-50. шейного типа очистка наружных  [c.258]

Мет, для подогрева воды с давлением не выше 300—400 кн1м до температуры 115° С. Вторые выполняют на большие теплопроизводительности от 4,75 до 210 Мет и устанавливают в крупных квартальных и районных котельных для теплоснабжения больших жилых массивов. Кроме того, водогрейные котлы теплопроизводительностью 35 Мет и выше устанавливают также на ТЭЦ взамен пиковых подогревателей сетевой воды.  [c.286]

Учитывая возможность реализации схем теплоснабжения путем различного сочетания источников теплоты и их мощностей, а также неоднозначности исходных данных, задачу рассматривали в много-вариантной постановке. В результате проведенных исследований установлено, что в условиях ЧССР более эффективным является использование ядерного горючего для комбинированного производства тепловой и электрической энергии. По сравнению с A T АТЭЦ могут конкурировать с ТЭЦ на органическом топливе при введении ограничения на использование каменного угля для целей теплоснабжения и при задержке освоения котлов с кипящим слоем. В случае применения АТЭЦ схема теплоснабжения рассматриваемого района приобретает вид, представленный на рис. 6.12. Она включает крупную АТЭЦ, а также ряд существующих ТЭЦ, покрывающих локальные тепловые нагрузки или используемых в качестве пиковых источников теплоты.  [c.128]

С целью дальнейшей экономии органического топлива систематически проводились и будут проводиться традиционные мероприятия, направленные на развитие централизованного теплоснабжения потребителей как наиболее рационального. Вводятся новые мощности на ТЭЦ, применяются более современные и крупные теплофикационные турбины и более соверщенные пиковые водогрейные котлы и начата разработка крупных паровых котлов. В одиннадцатой пятилетке будут вестись работы по созданию котлов производительностью 800 т/ч для канско-ачииских и экибастузских углей. Намечен ввод головного образца малогабаритного котла с циклонной топкой на твердом топливе.  [c.130]

Использование доочищенных сточных вод в теплосети требует особой осторожности. Системы с открытым водоразбором вообще не рассматриваются в качестве потребителей доочищенных сточных вод. Условия подготовки воды в закрытые системы теплоснабжения различаются в зависимости от состава сточных вод. При использовании бытовых сточных вод, не содержащих промышленных загрязнений, необходимо обеспечить надежность обеззараживания, которая даже в случае возникновения неорганизованного контакта (в результате неплотностей или разрыва трубок в теплообменниках и нагревательных приборах) гарантировала бы эпидемическую безопасность персонала и населения. Это достигается глубокой доочисткой, обеззараживанием и последующей термической обработкой в деаэраторах, бойлерах и пиковых котлах, где происходит необратимая стерилизация воды.  [c.71]

Карбонатная жесткость подпиточной воды при наличии в системе теплоснабжения пиковых водогрейных котлов не должна превышать 400 мкг-экв1л. При отсутствии пиковых водогрейных котлов остаточная карбонатная жесткость в подпиточной воде допускается до 700 мкг-экв1л.  [c.99]

По ПТЭ содержание кислорода в подпиточной воде должно быть не более 100 мкг1л, а для систем теплоснабжения с пиковыми водогрейными котлами не более 50 мкг1л. При наличии пиковых котлов присутствие свободной углекислоты не допускается. При отсутствии— свободная углекислота не нормируется.  [c.100]

При Na-катионировании в воде, после прохождения ее через фильтры, образуется карбонат натрия, который при высоких температурах распадается на едкий натр и углекислоту, вызывающие коррозию металла. По указанной причине На-катионпрование воды применяют только в системах теплоснабжения, не имеющих пиковых водогрейных котлов.  [c.103]

При пуске котла паропроизводительностью 250 т/ч по схеме Альстрем топка заполняется до определенного уровня кварцевым песком или другим материалом (зола угля и известняк), ожижается и первоначально нагревается верхними растопочными горелками, расположенными наклонно к кипящему слою. Дальнейшее поднятие температуры слоя до температуры воспламенения угля осуществляется включением пиковых горелок, расположенных в слое, сжигающих газ или жидкое топливо (рис. б.З). После загорания угля его расход увеличивается постепенно, в то время как расход мазута на пусковые горелки уменьшается. При достижении стабильного горения твердого топлива пусковые горелки отключаются. Нагрузка котла увеличивается с повышением расходов угля и воздуха [19].  [c.297]

J паровые котлы 2 — котлы-утилизаторы 3 — потребители пара 4 — экономайзеры 5 — пароперегреватель 6 и 7 — РОУ 8 — пиковый бойлер 9 —СИО 10 и JJ — деаэраторы J2 — теплообменник 13 и Н — фазы водо-подготовки 15 — основной бойлер 16 — дренажный бак 17 — производственный конденсат 18 и 19 — питательные насосы 20, 21 и 22 — насосы 23 — бак-аккумулятор 24 — расширитель.  [c.8]

Все современные ТЭЦ высокого давления, так же как и вновь проектируемые атомные ТЭЦ (АТЭЦ), для покрытия максимальных тепловых отопительных нагрузок снабжаются крупными пиковыми водогрейными котлами. Обычно коэффициенты теплофикации на таких ТЭЦ по отопительной теплофикационной нагрузке не превышают ат = 0,54-0,55, а по промышленным отборам Сп= = 0,8- 0,9. Дальнейшее повышение экономичности и эффективности  [c.3]

Технико-экономические исследования, проведенные институтом ВНИПИзнергопром, показывают, что широкое применение блочных схем на промышленно-отопительных ТЭЦ непосредственно связано с созданием и освоением промышленностью эффективных и надежных пиковых источников технологического пара, в первую очередь комбинированных пароводогрейных котлов. При наличии такой пиковорезервной котельной блочные промышленно-отопительные ТЭЦ должны комплектоваться, как правило, котлами производительностью  [c.10]

На каждой боковой стенке топки под конвективными шахтами размещаются три-четыре горелоч-ных устройства, имеющих встречное направление. Для обеспечения возможности более глубокого регулирования теплопроизводитель-ности без отключения горелок последние снабжаются мощными паромеханическими форсунками. Ширина котла в свету составляет 5740 мм. Схемы движения сетевой воды в котле КВ-ГМ-180 при работе его в основном и пиковом режимах приведены на рис. 2.19 и 2.20,  [c.36]

mash-xxl.info


Смотрите также