- 8 (495) 7487600
- 8 (495) 7487600
- 8 (925) 5552040
- 8 (925) 5552040
- Напишите нам
- Обратный звонок
Интернет магазин оборудования насосной, отопительной и водонагревательной техники №1
Паровые котлы. Марки паровых котлов
Паровые котлы
Ремонт паровых котлов
Котлы типа Е получили широкое распространение и изготавливаются с различным рабочим давлением и температурой пара.
В настоящее время котлостроительными заводами серийно выпускаются вертикально-водотрубные котлы Е-1/9-1 (модель ММЗ-1) паропроизводительностью по насыщенному пару 0,4 и 1 т/ч и рабочим давлением 0,9 МПа (9 кгс/см2) при сжигании газа и мазута (рис. 1.3).
Котел состоит из двух барабанов (верхнего и нижнего), конвективного пучка и топочных экранов, включенных в циркуляцию посредством четырех боковых и одного фронтового коллектора. I — нижний барабан; 2 — конвективный пучок; 3 — устройство для обдувки; 4 — верхний барабан; 5 — потолочно-фронтовой экран; 6 — боковой экран; ;7 — коллектор потолочно-фронтового экрана; в —верхний коллектор бокового і ЭК" ■ рана; 9 — нижний коллектор бокового экрана; 10 — колосниковая решетка |
Таблица 1.2. Техническая характеристика котлов типа Е
|
Примечание. Абсолютное давление пара в котлах всех тияов 0,9 МПа (9 кгс/см2). |
Вермпіе коллекіорьі снабжены круглыми лючковыми затворами дли ііоїможиоені осмотра и механической очистки труб от накипи. I) торцах каждого барабана имеются штампованные люки. Трубы присоединены к барабанам и коллекторам сваркой. Трубы конвективного пучка и топочном) экрана ммпог однії н тот же диаметр — 0 51 Х2,5 мм.
Для обеспечения поперечного оминання труб газовым потоком в конвективном пучке уеппкшлешд две перегородки.
Котел предназначен для сжигании топлива всех видов: твердого, жидкого н газообразного. Для сжигания твердого топлива топка оборудуется ручной колосниковой решеткой с опрокидывающимися колосниками; при сжигании газа и мазута используют соответствующие газомазутные горелки.
Удаление продуктов сгорания осуществляется дымососом, поставляемым комплектно с котлом.
Обмуровка облегченная, состоит из прилегающих непосредственно к трубам легковесных огнеупорных плит (или шамотного кирпича), покрытых газоуплотнительной обмазкой, и асбовермикулитовых (или совелитовых) плит, защищенных металлической обшивкой.
Котел снабжен автоматическим регулятором уровня воды и автоматикой безопасности. Котел поставляется в собранном виде.
Вертикально-водотрубные двухбарабанные паровые котлы Е-1/9-1 изготавливает Монастырищенский машиностроительный завод (Черкасская обл.) (табл. 1.2).
Котлы типа ДКВР. В промышленных и отопительных котельных распространены вертикально-водотрубные котлы типа ДКВ (двухбарабанные котлы водотрубные). Конструкция котлов типа ДКВ разработана ЦКТИ в содружестве с Бийским котельным заводом. Бийский завод выпускал котлы производительностью 2,4 и 6,5 т/ч, после унификации и реконструкции основных узлов котла типа ДКВ выпускались котлы производительностью 10 т/ч. Реконструированные котлы выпускались заводом под маркой ДКВР (двухбарабанные котлы водотрубные реконструированные). Реконструкция заключалась в уменьшении расстояния между трубами, что позволило сократить длину барабанов, уменьшить металлоемкость, размеры котлов и их топок.
Котлы типа ДКВР номинальной паропроизводителыюстыо 2,5; 4; 6,5; 10; 20; 35 т/ч предназначены для выработки насыщенного и перегретого водяного пара с температурой 250 и 370 °С.
По длине верхнего барабана котлы изготовлены двух модификаций: с длинным и укороченным барабаном. В котлах паропроиз-
|
Рис. 1.4. Паровой котел ДКВР-6,5-13-23 (с топкой ПМЗ-РПК-2). Продольный разрез |
Водительностью 2,5; 4 и 10 т/ч (раннего выпуска) верхний барабан значительно длиннее нижнего. В котлах иаропроизводнтельностью 10 т/ч (последней модификации) и больше верхний барабан значительно укорочен.
На рис. 1.4 показан паровой котел ДКВР-0,5-13-23.
Оба барабана имеют внутренний диаметр 1000 мм н расположены по продольной оси котла, т. е. перпендикулярно его фронту. Боковые топочные экраны и кипятильный пучок (конвективной части) изготовлены из труб 0 51 мм с толщиной стенки 2,5 мм.
В верхний и нижний барабаны экранные и кипятильные трубы ввальцованы, а с коллекторами трубы соединены сваркой.
Верхний барабан соединен с коллекторами экранных труб двумя опускными трубами ' 0 127 мм, которые размещены в передней стенке обмуровки котла. Одновременно эти трубы служат опорами для выступающей части барабана. Нижний барабан соединен с коллекторами экранных труб перепускными трубами 0 76 мм.
Верхний барабан оборудован предохранительными клапанами, водоукаэательными стеклами и сигнализаторами уровня воды.
Из переднего днища верхнего барабана отводятся импульсные трубки к регулятору питания.
В верхних барабанах котлои типа ДКВР размещены сепара - ционные устройства, состоящие из пакетов жалюзи и дырчатых листов, а также две трубы для подвода питательной воды. Только котлы паропроизводителыюстью 2,5 т/ч имеют одну питательную трубу. В нижних барабанах размещены перфорированная труба для продувки, штуцер для. спуска воды, а для котлов паропроизводн - тельностью от 6,5 до 35 т/ч дополнительно устройство для прогрева котла паром при растопке.
В последние годы котлы выпускаются без устройств непрерывной продувки.
Питательная вода поступает в верхний барабан по двум питательным линиям, откуда по слабообогреваемым трубам конвективного пучка поступает в нижний барабан.
Боковые экраны котлов ДКВР имеют шаг 80 мм; шаг задних и фронтовых экранов 80—130 мм.
Питание боковых экранов котлов паропроизводительностью до 10 т/ч осуществляется одновременно из верхнего барабана по передним опускным трубам и нижнего барабана посредством соединительных труб, что повышает надежность работы котлов при пониженных уровнях воды. В котлах паропроизводительностью 20 т/ч питание фронтового экрана осуществляется только из верхнего барабана, а заднего и боковых экранов — из нижнего.
Пароводяная смесь из экранов и подъемных труб пучка поступает в верхний барабан.
Котлы имеют экранированную топочную камеру и развитый кипятильный пучок из гнутых труб.
Для устранения затягивания пламени в пучок и уменьшения потерь с уносом и химическим недожогом топочная камера котлов ДКВР-2,5, ДКВР-4 и ДКВР-6,5 разделяется шамотной перегородкой на две части — собственно топку и камеру догорания. На котлах ДКВР-10 камера догорания отделяется от топки трубами заднего экрана. Между первым и вторым рядами труб котельного пучка всех котлов также устанавливается шамотная перегородка, отделяющая пучок от камеры догорания.
Внутри котельного пучка имеется чугунная перегородка, которая делит его на первый и второй газоходы и обеспечивает горизонтальный поворот газов в пучках при поперечном омывании труб. Вход газов из топки в камеру догорания и выход газов из котла — асимметричные.
Трубы боковых экранов установлены с шагом 80 мм, фронтовых и задних экранов —с шагом 130 мм (последние устанавливаются на котлах паропроизводительностью 10 т/ч).
Камеры экранов имеют диаметр 219 мм с толщиной стенки 8 мм для котлов на давление 1,4 МПа (14 кгс/см2) и 10 мм —на давление 2,4 МПа (24 кгс/см2).
Для удаления отложений шлака в котлах именЭтся торцевые лючки на нижних камерах экранов. Для осмотра и очистки кипятильных труб в пучках котлов ДКВР-6,5 и ДКВР-10 предусмотрены коридоры шириной 300 мм.
При наличии пароперегревателя часть кипятильных труб - не устанавливается.
Пароперегреватели расположены в первом по ходу газов газоходе конвективного пучка, унифицированы по профилю змеевиков для котлов одинаковых давлений и отличаются для котлов разной паропроизводителыюсти лишь числом параллельных змеевиков. Пароперегреватели для всех котлов ДКВР изготовлены из труб 0 32X3.
Входные концы труб пароперегревателя развальцовываются в верхнем барабане, а выходные привариваются к камере перегретого пара. Для сохранения зазоров между отдельными змеевиками устанавливают чутуйныеДкладыши и весь пакет стягивают специальными болтами. Перегр«®геяи котлов паропроизводительностью 4—10 т/ч имеют одну камЗ£§§^ перегретого пара, которая прикреплена к верхнему б1ра£аш( сзв&мфцью двух опор, из которых одна выполнена подвижЬойТ]^ і
ПерЕгреватели^йотпов паропроизводительностью 16 т/ч на давление 3,® МП-J (3§, кг<|/см2) кроме камеры перегретого пара имеют промежуточную камеру, разделенную перегородкой на две части. Движение ij^ia^ двухходовое. Пройдя первую половину перегревателя, прсшежуточн^^,камеру и пароохладитель, пар вновь возвращается в (лромежуяйую камеру, затем проходит вторую половину перегревателя.
Регулирование температуры пара осуществляется поверхностным пароохладителем, размещенным в нижнем барабане.
Котлы типа ДКВР паропроизводительностью 20 т/ч и 35 т/ч имеют укороченный верхний барабан.
Для сохранения необходимого водяного объема котлы снабжены выносными трубами — циклонами, к которым подключены фронтовой и боковой экраны. Подпитка циклонов ведется из нижнего барабана. Котлы полностью экранированы.
Котлы ДКВР-20 имеют фронтовой, задний и боковые (перекрещивающиеся на потолке) экраны, котлы ДКВР-35 также имеют фронтовой экран, переходящий в потолочный; задний, образующий в верхней части
Ка экранов и пучков может осуществляться через обдувочные лючки ручными переносными обдувочными приборами.
Котлы типа ДКВР предназначены для сжигания твердого, жидкого и газообразного топлива.
Техническая характеристика котлов ДКВР-2,5-14ГМ, ДКВР-4-14ГМ, ДКВР-6.5-14ГД и ДКВР-10-14ГМ приведена в табл. 1.3.
Котлы типа Е(КЕ) паропроизводительностью от 2,5 до 10 т/ч изготавливаются со слоевыми механическими топками (рис. 1.5).
Основными элементами котла являются верхний и нижний барабаны с внутренним диаметром 1000 мм, левый и правый боковые экраны и конвективный пучок, выполненный из труб 0 51x25 мм.
Топочная камера образована боковыми экранами, фронтовой и задней стенками. Ширина топочной камеры котлов Е-2,5-14Р (КЕ-2.5-14С), Е-4-14Р (КЕ-4-14С), Е-6.5-14Р (КЕ-6.5-14С) по осям экранных труб составляет 2270 мм, а ширина топочной камеры котла Е-10-14Р (КЕ-10-14С) — 2874 мм.
Топочная камера котлов паропроизводительностью от 2,5 до 10 т/ч разделена кирпичной стенкой на собственно топку глубиной1605—2105 мм и камеру догорания глубиной 360—745 мм, которая позволяет за счет уменьшения химического недожога топлива повысить КПД котла. Вход газов из топки в камеру догорания и выход газов из котла асимметричные. Под камеры догорания наклонен таким образом, чтобы основная масса подающего в камеру кусков топлива скатывалась на решетку.
Трубы конвективного пучка развальцованы в верхнем и нижнем барабанах и установлены с шагом вдоль барабана 90 мм, в поперечном сечении —110 мм, за исключением среднего ряда труб, шаг которых равен 120 мм, ширина боковых пазух—195— 387 мм.
Установкой одной шамотной перегородки, отделяющей камеру догорания пучка, и одной чугунной перегородки, образующей два газохода, в пучках создается горизонтальный разворот газов при поперечном омывании труб.
Особенностью котлов типа КЕ являются наличие плотных боковых экранов в области топочной камеры и ограждающих стен в конвективном пучке с шагом 55 мм при трубах 0 51x2,5 мм. Боковые экраны и крайние боковые ряды труб конвективного пучка объединены общими коллекторами по всей длине котла.
В котлах применена схема одноступенчатого испарения. Вода циркулирует следующим образом: питательная вода из экономайзера подается в верхний барабан под уровень воды по перфорированной трубе. В нижний барабан вода опускается по задним обогреваемым трубам кипятильного пучка. Передняя часть пучка (от фронта котла) является подъемной. Из нижнего барабана вода по паропере - пускным трубам поступает в камеры левого и правого экранов. Питание экранов осуществляется также из верхнего барабана по опускным стоякам, расположенным на фронте котла.
Вся пароводяная смесь выходит под уровень воды в верхнем барабане, где происходит процесс барботажа пара через слой воды. Отсепарированный в свободном объеме пар проходит через паропри - емный дырчатый лист, установленный на расстоянии 90 мм от верхней образующей барабана, и направляется в паропровод.
В нижнем барабане котлов размещено устройство прогрева котла при пуске, которое состоит из подводящей трубы с пароводяным эжектором.
Применение плотных экранов позволяет заменить тяжелую обмуровку на боковых стенах котлов натрубной, состоящей из слоя шамотобетона толщиной 25 мм по сетке и нескольких слоев изоляционных плит общей толщиной 100 мм.
Котлы типа КЕ паропроизводительностью от 2,5 до 10 т/ч оборудованы стационарными обдувочными приборами с расположенной по оси котла вращающейся трубой, имеющей ряд сопл.
Таблица 1.4. Техническая характеристика паровых котлов типа Е(КЕ-С) паропроизводительностью от 2,5 до 25 т/ч со слоевыми топками
|
Продолжение табл. 1.4
|
Прибор крепится на каркасе задней стенки котла, а конец обду- вочной трубы поддерживается втулкой, приведенной к, трубе пучка. Для обдувки котлов применяется насыщенный или перегретый пар с давлением пара не выше 0,7—1,0 МПа (7—10 кгс/см2) или сжатого воздуха с давлением 4 МПа (40 кгс/см2).
В качестве топочного устройства для сжигания каменных и бурых углей к котлам паропроизводительностью 4; 6,5 и 10 т/ч устанавливаются топки типа ТЛЗМ с пневмомеханическими забрасывателями с моноблочной ленточной решеткой обратного хода.
Котел Е-2,5-14Р (КЕ-2.5-14С) комплектуется топкой типа ЗП-РПК с пневмомеханическими забрасывателями и решеткой с поворотными колосниками.
Техническая характеристика паровых котлов паропроизводительностью от 2,5 до 25 т/ч типа Е(КЕ) со слоевыми топками приведена в табл. 1.4.
Котлы типа Е(ДЕ). Газомазутные вертикально-водо - трубные паровые котлы паропроизводительностью 4; 6,5; 10; 16 и 25 т/ч предназначены для выработки насыщенного или перегретого пара, идущего на технологические нужды промышленных предприятий, в системы отопления, вентиляции и горячего водоснабжения! На рис. 1.6 показан котел ДЕ-25-14ГМ.
Основными элементами котлов являются верхний и нижний барабаны, конвективный пучок, фронтовой, боковой и задний экраны, образующие топочную камеру.
Во всех типоразмерах котлов диаметр верхнего и нижнего барабанов 1000 мм. Расстояние между барабанами 2750 мм. Длина цилиндрической части барабанов когла производительностью 4 т/ч — 2250, котла паропроизводительностью 25 т/ч — 7500 мм.
Для доступа внутрь барабанов в переднем и заднем днище каждого из них имеются лазовые затворы. Изготавливаются барабаны для котлов с рабочим давлением 1,4 и 2,4 МПа (14 и 24 кгс/см2) из стали 16ГС и имеют толщину стенки соответственно 13 и 22 мм.
В водян
msd.com.ua
Металл паровых котлов
Паровые котлы ТЭС
Основными материалами для котлостроения служат углеродистые, а также легированные стали, в состав которых включены хром, никель, молибден, вольфрам, ванадий и др. Большинство легирующих элементов относится к дорогим материалам, однако введение их в состав стали сообщает ей ряд ценных свойств, недостижимых для углеродистой стали.
Углеродистая (нелегированная) сталь применяется для "изготовления элементов парового котла, которые работают в условиях отсутствия ползучести, т. е. при температуре не выше 450°С. По условиям технологии сварки, являющейся основным технологическим процессом при изготовлении паровых котлов, многие ответственные элементы изготовляются из малоуглеродистых сталей марок 10 и 20. Сталь 20 является преобладающей, поскольку по прочности она превосходит сталь 10, а по свариваемости и коррозионной стойкости не уступает ей. Основа микроструктуры металла труб — феррит, мягкая и пластичная составляющая; количество упрочняющей составляющей — перлита — невелико. Листовая сталь имеет повышенное содержание углерода, в среднем от 0,15% (сталь 15К) до 0,25% (сталь 22К), что повышает показатели ее прочности: свариваемость этой стали вполне удовлетворительная. Сталь марки 22К отличается повышенной прочностью, что определяется несколько более высоким содержанием марганца и присутствием небольшого количества титана,
Низколегированная сталь перлитного класса. Низколегированной является сталь, содержащая ие больше 4—5% легирующих элементов.,Такие стали применяются для изготовления элементов котлов, работающих вдело - виях ползучесхи: трубы и коллекторы пароперегревателей, паропроводы. Они применяются также для изготовления барабанов котлов на давление 18—38,5 МПа.
Низколегированные стали, устойчивые против ползучести при температуре до 580°С, когда не требуется очень высокая стойкость против окалинообразования, называются теплоустойчивыми, реже теплостойкими. Стали, устойчивые против ползучести при температуре выше 580°С и одновременно хорошо сопротивляющиеся окислению, при этих температурах называются жаропрочными. Жаропрочность — высшее свойство стали, перекрывающее теплоустойчивость.
Основными легирующими добавками являются Мо, Cr, Si, Д1. Растворяясь в феррите, молибден повышает его длительную прочность и сопротивление ползучести. Хром, а также кремний и алюминий повышают окали- ностойкость потому, что при контакте с кислородом они образуют соответственно Сг2р3, БЮг и АЬОз, очень тугоплавкие, плотные и близкие по коэффициенту теплового расширения к стали. Такие соединения хорошо защищают сталь от окисления.
Широкое применение получили низколегированная хромомолибденовая сталь перлитного класса 15ХМ (1% Сг и 0,5% Мо), молибденохромовая сталь 12МХ (0,5% Сг и 0,5% Мо). Эти стали, особенно 15ХМ, отличаются хорошей свариваемостью, повышенным сопротивлением ползучести и малой склонностью к графити - зации.
Стремление к дальнейшему повышению температуры перегретого пара при использовании недорогих низколегированных сталей перлитного класса привело к дополнительному легированию хромомолибденовой стали ванадием в количестве 0,2—0,3%. Ванадий как сильный карбидообразователь способствует повышению предела ползучести.
В настоящее время широко применяют хромомолиб - деновую сталь 12Х1МФ (1% Сг. 0,3% Мо, 0,2% V) и более стойкую против ползучести сталь 15Х1МФ с несколько повышенным содержанием углерода и значительно повышенным содержанием молибдена (1% Сг, 1% Мо, 0,2% V). Незначительная добавка ванадия уменьшает скорости ползучести. Эти стали предназначены для работы при температуре до 565—570°С.
Наиболее окалиностойка и жаропрочна сталь перлитного класса марки 12Х2МФСР, содержащая для ока - линостойкости 2% Сг и 0,4—0,7% Si. Присадка очень незначительного количества бора (0,003—0,005%) повышает жаропрочность. Эта сталь, из которой изготовляют главным образом трубы пароперегревателя, очень чувствительна к режиму термической обработки.
Высоколегированная сталь аустенитного класса. Стремление к повышению температуры перегретого пара до 600—650°С потребовало применения еще более жаропрочных и окалиностойких сталей. Структурной основой таких сталей служит высоколегированный хромони - келевый или хромоникелемарганцевый аустенит. Высокое содержание хрома в аустенитных сталях делает их вы- сокоокалиностойкими. В отличие от низколегированной стали в высоколегированной аустенитной стали добавка только никеля и хрома достигает 30% и более общей массы металла, однако стоимость ее в несколько раз выше. Титан и ниобий — элементы-стабилизаторы прибавляют к аустенитной стали для предотвращения интер- кристаллитной коррозии Будучи сильными карбидообра - зователями, эти элементы связывают весь углерод в карбиды, не давая тем самым образоваться карбидам хрома по границам зерен аустенита. Если же карбиды хрома образуются, то аустенит обедняется вблизи них хромом, и эти обедненные хромом участки теряют создаваемую высоким содержанием хрома коррозионную стойкость, что приводит к интеркристаллнтной коррозии.
Для повышения способности к образованию чисто аустенитной структуры прибегают к повышению отношения содержания никеля к хрому. Из сталей с повышенным отношением Ni/Cr в первую очередь следует отметить сталь 12X18h22T, далее сталь Х14Н14В2М с вольфрамом и молибденом и сталь типа 16-13-3 (16% Сг, 13% № и 3% Мо). Молибден и вольфрам добавляют к аустенитной стали с целью дальнейшего повышения жаропрочности в связи с образованием в их структуре высокодисперсных прочных соединений Fe2Mo и Fe2W, существенно повышающих жаропрочность стали.
Высоколегированная сталь мартенситного и мартен - ситно-ферритного классов. К недостаткам аустенитной стали относится склонность к образованию трещин при совместном воздействии напряжений и коррозионной среды (коррозионное растрескивание) и образование кольцевых трещин в окслошовной зоне сварных соединений вследствие резкого снижения пластичности некоторых участков околошовной зоны при нагреве. Аусте - нитная сталь дорога из-за высокого содержания никеля. Стремление к снижению стоимости жаропрочной стали при одновременном устранении недостатков, присущих аустенитной стали, привело к разработке более дешевых безникелевых сталей на основе И—13% Сг с добавкой молибдена, вольфрама и ванадия для повышения жаропрочности. При такой композиции легирующих элементов структура этой стали представляет собой низкоуглеродистый мартенсит или мартенсит с ферритом, чем н определяется название классов этой стали.
Низколегированная сталь, работающая в условиях отсутствия ползучести. В котлостроении широко применяют низколегированную сталь, работающаю при относительно невысокой температуре, когда явление ползучести не проявляется. Цель применения такой стали, более прочной, чем углеродистая, — уменьшение толщины стенки элементов и соответственно уменьшение затраты металла. Для изготовления барабанов котлов высоких параметров, например, применяют марганцовони- келемолибденовую сталь марки 16ГНМА (1% Мп, 1,2% Ni, 0,5% Мо). Для трубопроводов питательного тракта СКД применяют марганцовокремниевую сталь марки 15 ГС (1,1% Мп, 0,8% Si).
В табл. 25.1 приведены основные характеристики сталей, применяемых для изготовления поверхностей нагрева паровых котлов, барабанов, коллекторов и трубопроводов.
В котлостроении широкое применение получил чугун: серый и окалиностойкий. Серый чугун (СЧ) имеет высокие литейные свойства. Из пего изготовляют гарнитуру топочных устройств: лазы, лючки, взрывные клапаны, арматуру для крепления и подвески обмуровки. Наибольшая температура применения 250—350°С. Окалиностойкий чугун (ОЧ) легирован элементами, повышающими его жаростойкость (например, кремнием). Из него изготовляют дистанционные гребенки пароперегревателей, подвески для крепления труб и другие детали, работающие в зоне высоких температур.
Нормальному (неаварийному) останову котла (блока) предшествует его разгрузка. При останове в резерв на короткое время (например, на ночь) стремятся в наибольшей степени сохранить тепловое состояние оборудования, в связи с чем …
Рассматриваемые режимы можно разделить на три основных этапа: подготовительные операции, собственно растопки котла и повышение нагрузки до заданной. Рассмотрим их применительно к наиболее современному оборудованию — блочным установкам. В течение …
В соответствии с тепловой схемой АЭС пар вырабатывается либо непосредственно в ядерных реакторах кипящего типа, либо в парогеиераторах-теплообменни - ках, в которых осуществляется передача теплоты от теплоносителя, поступающего из реактора, …
msd.com.ua
КОНСТРУКЦИИ ОТЕЧЕСТВЕННЫХ ПАРОВЫХ КОТЛОВ.
Количество просмотров публикации КОНСТРУКЦИИ ОТЕЧЕСТВЕННЫХ ПАРОВЫХ КОТЛОВ. - 109
Барабанные котлы с естественной циркуляцией. На рис. 18.7 изображены газомазутный котел марки ТГМ-84Б производительностью 420 т/ч при давлении вырабатываемого пара 13,7 МПа (140 кгс/см2) и температуре 560 °С. Этот котел имеет сравнительно небольшие размеры (высота до оси барабана всего 28,7м). Топка котла разделена на две симметричные камеры (полутопки) вертикальным, воспринимающим излучение с двух сторон (двусветным) экраном. Первая ступень пароперегревателя этого котла выполнена из трубных панелей, расположенных по всей высоте фронтовой стены обеих полутопок, и является фронтовым экраном Потолок также закрыт сплошным рядом труб, образующих потолочный экран. Это — вторая часть пароперегревателя (радиационный потолочный пароперегреватель). Третьей ступенью пароперегревателя являются разреженные пакеты вертикальных змеевиков, так называемые ширмы, расположенные отчасти в топке и воспринимающие излучением от горячих топочных газов значительную часть теплоты. Последняя ступень — горизонтальные пакеты труб в конвективном газоходе (конвективный пароперегреватель). В результате радиацией передается до 60 % всей теплоты, воспринимаемой пароперегревателем.
Боковые экраны в нижней части имеют слабо наклоненные скаты к середине топки, образующие под. Во избежание перегрева обращенной к топке поверхности почти горизонтальных подовых труб при возможном расслоении в них пароводяной смеси эти трубы имеют защитную обмуровку со стороны топки. В настоящее время данный котел снабжается либо четырьмя, либо шестью горелками большой производительности. Малое число горелок упрощает обслуживание и ремонт котла.
Интересно крепление змеевиков конвективного пароперегревателя. Пакеты змеевиков опираются на стальные камеры (трубы), служащие опорными балками. Сами камеры охлаждаются прокачиваемой через них питательной водой.
Вся экранная система испарительных и пароперегревательных труб имеет возможность свободно удлиняться вниз.
Для удаления с поверхности труб конвективной шахты отложений, образующихся при сжигании мазута͵ используется система дробеочистки. Поднимаемая пневмотранспортным устройством чугунная дробь выбрасывается затем в конвективную шахту и, падая, сбивает с труб накопившиеся отложения, которые уносятся затем дымовыми газами.
Вращающийся регенеративный воздухоподогреватель устанавливается на индивидуальной опорной конструкции на некотором расстоянии от котла.
Расход топлива котельным агрегатом — примерно 29 000 кг/ч мазута или 30 000 м3/ч природного газа. Температура питательной воды 230 °С; КПД котла 92,5 %; температура горячего (после воздухоподогревателя) воздуха — около 300 °С; температура уходящих газов при работе на мазуте 130 °С, при работе на природном газе 120 °С.
Основным типом паровых котлов малой производительности, широко распространенных в различных отраслях промышленности, на транспорте, в коммунальном и сельском хозяйстве (пар используется для технологических и отопительно-вентиляционных нужд), а также на электростанциях малой мощности, являются вертикально-водотрубные котлы ДКВР производства Бийского котельного завода. Котлы этого типа выпускаются производительностью от 2,5 до 20 т/ч насыщенного или перегретого пара при давлении 1,4; 2,35 и 3,9 МПа и температуре до 440 °С. Котлы ДКВР являются унифицированными транспортабельными и поставляются заказчику: малые — в собранном виде; повышенной производительности — тремя крупными блоками.
ДКВР (рис. 18.8) —двухбарабанные котлы с естественной циркуляцией и экранированной топочной камерой. Барабаны расположены вдоль оси котла, между ними размещен коридорный пучок кипятильных труб Движение топочных газов — горизонтальное с поперечным смыванием труб и поворотами. Повороты топочных газов обеспечиваются установкой перегородок, первая из которых выполнена из шамотного кирпича, вторая — из чугуна. Боковые экранные трубы верхними концами закреплены в верхнем барабане, нижние концы экранных труб приварены к нижним коллекторам. Передние опускные трубы, расположенные в обмуровке, являются также дополнительной опорой верхнего барабана. Пароперегреватель, в случае если он имеется, размещается вместо части труб кипятильного пучка (обычно первого газохода). Вход пара в пароперегреватель — непосредственно из барабана, выход — в коллектор, расположенный над перекрытием топки.
Температура уходящих из котла газов может достигать 400 °С. По этой причине за котлом часто устанавливают водяной экономайзер либо трубчатый воздухоподогреватель. Это позволяет поднять КПД котла до 90,5 %.
Водогрейные котлы. Водогрейные котлы предназначены для нагрева воды с целью отопления и использования ее для бытовых нужд. Обычно воду тепловой сети подогревают от 70—104 до
150—170 °С. В последнее время имеется тенденция к повышению ее температуры до 180—220 °С. Столь высокий уровень нагрева воды позволяет передать потребителю достаточно большое количество теплоты относительно малым расходом воды. Котлы обычно работают по прямоточной схеме с постоянным расходом воды, а количество передаваемой теплоты регулируется (в зависимости от погодных условий) температурой ее нагрева
Во избежание конденсации водяных паров из уходящих газов и связанной с этим наружной коррозии поверхностей нагрева температура воды на входе в котел должна быть выше точки росы для продуктов сгорания. В этом случае температура стенок труб в месте ввода воды также будет не ниже точки росы Поэтому температура воды на входе не должна быть ниже 60 °С при работе на природном газе, 70 °С при работе на малосернистом мазуте и 110°С при использовании высокосернистого мазута Поскольку в теплосети вода может охлаждаться до температуры ниже 60 °С, перед входом в агрегат к ней подмешивается неĸᴏᴛᴏᴩᴏᴇ количество уже нагретой в котле (прямой) воды.
На рис. 18.9 изображен общий вид газомазутного водогрейного котла типа ПТВМ-ЗОМ-4 теплопроизводительностью при работе на мазуте 41 МВт (35 Гкал/ч), хорошо зарекомендовавшего себя в эксплуатации. Котел имеет П-образную компоновку и оборудован шестью газомазутными горелками (по три на каждой боковой стене) с мазутными форсунками механического распыливания Топочная камера котла полностью экранирована трубами диаметром 60 мм. Конвективная поверхность нагрева выполнена из горизонтальных труб диаметром 28 мм Конвективная шахта также экранирована. Облегченная обмуровка котла крепится непосредственно на трубы, опирающиеся, в свою очередь, на каркасную раму. Котлы этого типа, предназначенные для работы на мазуте, оборудуются дробеочистительной установкой.
Циркуляционная схема котла приведена на рис. 18.10. Вода подводится к фронтовому экрану топочной камеры, выводится — из бокового экрана топки.
Котлы-утилизаторы. Для использования теплоты отходящих газов различных технологических установок, в т.ч. и печей, применяются котлы-утилизаторы, вырабатывающие, как правило, пар. Размещено на реф.рфПри высоких температурах газов (более 900 °С) эти котлы снабжаются радиационными (экранными) поверхностями нагрева и имеют такую же компоновку, как и обычный паровой котел, только вместо топки — радиационная камера, в которую снизу входят газы. Воздухоподогреватель отсутствует, в случае если нет крайне важно сти в горячем воздухе для нужд производства. Газы сначала охлаждаются в радиационной камере, как в топке ʼʼобычногоʼʼ котла. Большой свободный объём этой камеры позволяет иметь повышенную толщину излучающего слоя и, как следствие, повышенную степень черноты газов. По этой причине здесь преобладает передача теплоты излучением.
Первичное охлаждение газов в свободном от змеевиков объёме крайне важно для затвердевания уносимых из печи расплавленных частиц шлака или технологического продукта до того, как они прилипнут к холодным змеевикам и затвердеют на них.
В случае если отходящий из технологических установок газ не содержит горючих компонентов, то такой котел горелочных устройств не имеет Эти котлы работают с естественной или принудительной циркуляцией и имеют практически все детали описанных выше котельных агрегатов.
При конструировании котлов, использующих тепловые отходы, следует учитывать содержащиеся в греющих газах агрессивные компоненты, к примеру сернистые газы, поступающие из печей обжига серосодержащего сырья. При наличии в подводимых к котлу технологических газах горючих составляющих организуется их предварительное дожигание в радиационной камере, которая в данном случае фактически превращается в топку.
При температурах газов ниже 900 °С в котлах-утилизаторах обычно используются только конвективные поверхности нагрева. Эти агрегаты радиационной камеры не имеют, а целиком выполняются из змеевиков.
Так, в настоящее время выпускается серия унифицированных котлов типа К.У (КУ-125; КУ-ЮО-1; КУ-80-3, КУ-60-2), устанавливаемых за печами заводов черной металлургии. Первая цифра в маркировке означает максимальный часовой расход газов через котел (тыс. м3 при нормальных условиях). Температура газов на входе 650—850 °С. Параметры вырабатываемого пара: давление 1,8— 4,5 МПа и температура 365—385 °С. Паропроизводительность котла КУ-125, например, составляет 27—41 т/ч. Все котлы этой серии, как и большинство других змеевиковых утилизаторов, работают с многократной принудительной циркуляцией воды через испарительные поверхности (рис. 18.11). Вода, подогретая в водяном экономайзере 5, подается в барабан 3, откуда забирается циркуляционным насосом 2 и прокачивается через испарительные змеевики 4. Далее пароводяная смесь возвращается в барабан, где пар отделяется от воды. Вода вновь направляется в циркуляционный насос, а отсепарированный пар — в пароперегреватель 1, который установлен в зоне повышенной температуры газов.
referatwork.ru