КОММЕРЧЕСКОЕ ПРЕДЛОЖЕНИЕ. Газовый котел для теплицы на 500 кв м


Калькулятор расчета мощности обогрева теплицы

Наличие загородного участка очень часто предполагает ведение на нем тех или иных сельскохозяйственных работ. Согласитесь, любому человеку приятно иметь на своем столе овощи, фрукты или ягоды, выращенные собственноручно и гарантированно «чистые». Но вот правда летний «огородный» сезон во многих регионах – довольно короток. Поэтому рачительные хозяева строят специальные агротехнические сооружения – теплицы и парники. А чтобы довести период сельхозработ до возможного максимума, или даже вообще перейти на круглогодичный цикл, обязательно потребуется оборудовать теплицу системой обогрева.

Калькулятор расчета мощности обогрева теплицы

Система отопления теплицы может быть разной – печи длительного горения, водяные или электрические контуры, заглубленные в грунт по принципу «теплого пола», конвекторы, обеспечивающие перемещения масс теплого воздуха, инфракрасный обогрев. Но любая из выбранных систем должна выполнять главную задачу – создавать и поддерживать в помещении требуемую для выращиваемых культур температуру, то есть, обладать определенной тепловой мощностью. А вот какой? – в этом вопросе нам поможет калькулятор расчета мощности обогрева теплицы.

Ниже, под калькулятором, приведены пояснения и необходимые справочные данные.

Содержание статьи

Калькулятор расчета мощности обогрева теплицы

Перейти к расчётам

Пояснения по проведению расчетов

Мощности системы обогрева теплицы должно быть достаточно для обеспечения компенсации теплопотерь, а они, при больших площадях остекления этих сооружений – весьма немалые.

Расчет необходимой тепловой мощности строится исходя из следующего соотношения:

Qт = Sw × Kinf × Δt × τw

Qт – рассчитываемая мощность обогрева.

Sw – площадь остекления теплицы. Именно она принимается в расчет, так как через прозрачные стены проходит не только инсоляция (проникновение энергии солнечных лучей), но и максимальный объем теплопотерь.

Площадь рассчитывается самостоятельно, по известным геометрическим формулам.

Для тех, у кого возникли сложности с вычислением площади…

Некоторые геометрические фигуры не желают напрямую «подчиняться» простым формулам, и их приходится разбивать на участки. Как рассчитать площадь – в том числе и для сложных случаев, с примерами и калькуляторами – в специальной публикации нашего портала.

Kinf – так называемый коэффициент инфильтрации. Он зависит от примерного режима эксплуатации теплицы, то есть от необходимой температуры внутри сооружения, и возможного уровня температур снаружи, на улице. Естественно, желательно брать в расчет наиболее неблагоприятные возможные условия, чтобы обеспечить необходимый эксплуатационный запас мощности.

Значения коэффициента инфильтрации можно взять из таблицы ниже:

Планируемая температура воздуха в помещении теплицыВозможная температура воздуха снаружи
0 °С- 10 °С- 20 °С- 30 °С- 40 °С
+ 18 °С1.081.131.181.241.30
+ 25 °С1.111.161.211.271.33

Δt – максимальная амплитуда температуры, то есть разница между нормальным значением в помещении, и минимальным – на улице, в самую холодную неделю в период эксплуатации теплицы. В калькуляторе значении Δt будет подсчитана по указанным значения снаружи и внутри.

— Как правило, + 18 ºС бывает достаточно для выращивания большинства овощей. Для рассады или цветов требуется порядка + 25 ºС. При выращивании некоторых экзотических растений температурный режим предполагает и более высокие показатели.

— В поле ввода внешних температур указывается уровень минимальной отрицательной температуры воздуха, характерный для данного региона, в период эксплуатации теплицы.

τw – показатель теплопроводности материала остекления теплицы.

Разные материалы (по составу и по строению) имеют собственную теплопроводность – она уже учтена в алгоритме калькулятора. Вариант теплицы с пленочным покрытием не рассматривается, так как воспринимать его всерьез в качестве «зимнего» сооружения – было бы преувеличением.

Полученное значение, в киловаттах, станет ориентиром при выборе наиболее подходящей системы обогрева теплицы.

Сложно ли построить теплицу самостоятельно?

Вопрос неоднозначный, так как теплицы могут существенно различаться размерами, принципиальной конструкцией, своей оснащенностью и другими характеристиками. Тем не менее, это вполне выполнимо, и ряд полезных рекомендаций по данной проблеме можно получить в специальной статье портала – про строительство теплицы своими руками.

stroyday.ru

Как рассчитать мощность отопления для зимней теплицы

Что такое тепловой баланс

Когда определяют потребности частного дома в тепловой энергии, пользуются простым правилом: на каждые 10 квадратных метров площади должно приходиться около 1 кВт мощности теплогенератора. При рассмотрении сооружений защищённого грунта такой подход не годится, потому что слишком сильно отличаются теплотехнические характеристики ограждающих конструкций - потребности в энергии будут в разы больше.

Нормально работающее отопление (не важно, дом это или теплица) должны в полной мере восполнять потери тепла. Тогда после достижения необходимого температурного режима пользователь сможет вручную или при помощи автоматики поддерживать этот баланс.

Итак, найдём точные данные о теплопотерях - узнаем, какой мощности нужно отопление.

Как теплица теряет тепло

До 20-30 процентов полезной энергии может уходить с тёплым воздухом через щели, зазоры (форточки, дверь…), вентиляцию. Происходит инфильтрация - снизу (например, под дверью, или в зоне примыкания обшивки к фундаменту) подсасываются холодные воздушные массы, а вверху тёплый воздух уходит наружу.

Практика показывает, что, если нет искусственного подогрева грунта, то около 2-5 процентов тепла уходит через него. Интересно, что это происходит неравномерно, чем ближе к центру сооружения, тем потери меньше. Больше всего теплопередача наблюдается по периметру.

Самые большие теплопотери имеем через ограждающие конструкции: обшивку и цоколь теплицы. В среднем около 80 процентов тепловой энергии передаётся через укрывочный материал. Каркас в данном случае занимает слишком мало площади, поэтому основное внимание уделяется теплопроводности обшивки. Характеристики (коэффициент теплопередачи измеряется в Вт/м2 •°С) основных материалов известны:

Формула расчета отопительной системы

Для определения потребностей теплицы в энергии используют такую общеизвестную формулу:

Q сист.отоп. = kт х Sогр х (Твн – Тнар) х kинф

kт - это коэффициент теплопередачи обшивки (выбираем из списка выше). Sогр - общая площадь стен + площадь кровли. Твн – Тнар - это дельта температур, суммарный перепад между наружной и проектной внутренней. Данные о сезонных температурах можно взять из нормативных документов по отоплению зданий, например, СНиП 23-01-99 «Строительная климатология».kинф - коэффициент инфильтрации, отображающий потери тепла через неплотные примыкания и зазоры (в среднем равняется 1,25). Для качественных фабричных теплиц он может не применяться.

Коэффициент инфильтрации

t вн

t нар

-10°

-20°

-30°

-40°

18°

1,08

1,13

1,18

1,24

1,30

25°

1,11

1,16

1,21

1,27

1,33

Попробуем рассчитать на примере. Предположим, у нас имеется теплица с суммарной площадью обшивки 150 м2. В качестве укрывочного материала используется поликарбонат толщиной 8 мм (3,3 Вт/м2 •°С). Внутри нам нужно иметь температуру более +16 градусов, минимальная пиковая температура для конкретного региона может достигать -30 градусов (дельта составит 46). Инфильтрация возможна, поэтому коэффициент используем.

Q сист.отоп. = 3,3 х 150 х 46 Х 1,25 = 28,5 кВт

Для аналогичной теплицы из одинарного стекла потребуется котёл или, например, дровяная печь-булерьян мощностью 51,75 кВт (Q сист.отоп. = 6 х 150 х 46 Х 1,2). Соответственно, плёночное сооружение будет ещё «прожорливее» - необходимо создать систему производительностью порядка 83 киловатт.

Если теплогенератор у вас в наличие имеется - используя формулу, можно высчитать, какого максимального размера (или из какого материала) теплицу можно строить под него. В свою очередь, если есть котёл, и есть теплица - можем высчитать, при какой минусовой температуре можно будет эксплуатировать сооружение.

Некоторые пояснения к теплотехническому расчету теплицы

Очевидно, что не все нюансы учтены. Некоторые моменты упрощаются или принимаются по умолчанию.

  • Не принимается во внимание тепло, полученное от солнца, то есть рассчитывается исключительно «ночной режим», как самый критичный.
  • Наружная минусовая температура берётся самая низкая за зимние месяцы.
  • Редко когда считают потери тепла через почву, особенно для крупных блочных теплиц. Также не считают аккумулируемое грунтом или другими массивами тепло.
  • Внутренняя температура воздуха указывается средняя по объёму, а почвы - средняя по площади. В большинстве случаев температура почвы принимается равной температуре воздуха.
  • Не принимается во внимание влажность воздуха и процент содержания в нём углекислого газа.
  • Рассматривается исключительно естественная вентиляция.
  • Расчёты производятся «без растений» (за исключением номинальной внутренней температуры, которая нужна для роста конкретных культур).
  • Не учитываются технические особенности отопления, конфигурация системы считается оптимальной.

Выбирая котёл или другое отопительное устройство, рекомендуется предусмотреть запас мощности около 20% сверх расчётной, больше - тоже нерационально. Желательно, отказаться от универсальных многотопливных агрегатов (обычно они менее эффективны). Используйте погодозависимую автоматику - она реально позволяет экономить энергоносители.

www.gradaplast.ru

Строительство теплицы 200 кв. метров

КОММЕРЧЕСКОЕ ПРЕДЛОЖЕНИЕ

 

На поставку конструкций, инженерного и технологического оборудования теплицы 200 кв. метров

 

 

В связи с Вашим запросом направляем Вам информацию по поставке промышленных пленочных теплиц для профессионального круглогодичного выращивания овощных, зеленных и цветочных культур.

 

1. Тепличная конструкция

 

 

Тепличная конструкция:

 

Расстояние между арками: 2,00 м,

 

Арка из оцинкованной трубы Ø 60 мм х 2 мм.

 

-Торцы Поликарбонат 8 мм.

 

-раздвижные ворота с каждой стороны теплицы 3,2 м х 2,2 м.

 

-Двойной слой пленки 180 мкр. с анти-капельным покрытием,

 

- Система наддува воздуха в межпленочное пространство.

 

- вегетативная нагрузка – 16 кг/м2.

 

Площадь 192 м2, длина – 20,0 м.

 

 

 

Описание конструкции

 

Нагрузки на конструкцию:

 

  • Ветровая IV
  • На шпалеру 16 кг/м2
  • Снеговая IV
  • Запас нагрузки 1,25 Элементы каркаса состоят из оцинкованной стали.

Элементы арки соединенные муфтами, представляют собой круглую трубу Ø 60 мм, толщина 2 мм. Соединение арок по коньку и распорок трубой Ø 32 мм, толщиной 1.5 мм. Дополнительно установлено с каждой стороны теплицы по 2 прогона (труба профильная 25*25 толщина стенки 2 мм) соединенными с аркой хомутами. Устойчивость туннелей к ветровым и снеговым нагрузкам достигается за счет дополнительных связей арок между собой, частоты их расположения

 

Фундаменты

    

Для каждой стойки требуется пробурить яму. Размер каждой ямы должен быть минимум 450 мм в диаметре и 1000 мм глубиной. Стойка теплицы с прямой стенкой погружается в яму примерно на 700 мм. Бетон должен соответствовать марке М-500.

 

Покрытие, крепление и система надува

Теплица покрыта двойной светостабилизированной полиэтиленовой пленкой с зашитой от разрушения UF излучения с антиконденсатным покрытием, гарантийный срок службы 60 месяцев. Для крепления предусмотрены алюминиевые профили с ПВХ зажимами и замками.

 

Между слоями пленки через турбину подается воздух, периоды работы турбины контролирует блок управления. Созданная воздушная подушка гарантирует экономию тепловой энергии и снижает амплитуду температурных колебаний, повышается жесткость конструкции и устойчивость к ветру.

 

 

 

Описание пленки KRITIFIL производства PLASTIKA KRITIS.

 

Пленки торговой марки КРИТИФИЛ объединяют в себе долгосрочность использования, повышенную прочность и высокое светопропускание с дополнительными свойствами, делающими эти пленки незаменимыми участниками процесса защиты, выращивания и повышения продуктивности растений.

 

Свойства пленки:

- термический эффект,

- эффект рассеивания света,

- противокапельный эффект,

- противотуманный эффект,

- охлаждающий эффект,

- эффект контроля над болезнями и вредителями,

- эффект выбора светового спектра.

Компанией PLASTIKA KRITIS представлено новое поколение супер-прочных пленок основанное на использовании при производстве высоко - прочных полимеров. Гарантийный срок службы пленки 60 мес.

 

1. Вентиляция

 

В стандартную комплектацию по всей длине теплицы предусмотрена ручная вентиляция, путем скручивания пленки на вал, с помощью рукоятки соединенной с валом карданом.

 

          Боковая вентиляция (стандартная)                            Коньковая вентиляция (опция)

      

 

 

2. Система воздушного отопления

 

Для круглогодичной эксплуатации теплиц рекомендуем установить воздухонагреватели AGRI, которые работают на трех видах топлива (природный газ, сжиженный газ и дизельное топливо) в зависимости от установленной горелки (КПД 90%).

    

 

 

На всех моделях воздухонагреватели AGRI установлен термостат, поэтому он не будет работать круглый час.

 

Модель AGRI-Р 60 (400 3 ф. 50 Гц, 230В 1ф., 4 500 м3/ч).

 

Потребление:

 

- электроэнергия: 1,65 кВт (вентилятор 1,2 кВт + горелка 0,45 кВт),

 

- Газ 4,92 м3/час,

 

- Пропан 1,9 м3/час,

 

- Бутан 1,44 м3/час,

 

- дизтопливо 3,92 кг/час.

 

Учитывая Вашу климатическую зону и необходимость держать в теплице температуру + 15 гр. С в зимний период при температуре окружающей среды - 20 гр.С. Теплопотери составят 56 кВт/час . Рекомендуем установить в теплицу воздухонагреватель AGRI-Р 60 .

 

Цена на площадь

 

 

3. Система полива-питания растений

Система верхнего полива дождеванием

 

 

 

Комплект материалов для верхнего полива дождеванием с помощью подвесных спринклеров типа «апсайддаун», «гринспин» (размер капли до 400 мк)

 

Цена 60 000 руб.

 

 

 

 

 

ОБЩАЯ ЦЕНА ПРЕДЛОЖЕНИЯ:

 

 

Цена указана на условии самовывоза г. Тула.

Цена не включает материалы, работы и услуги, не упомянутые в данном предложении.

Расход бетона М-200 составит 6,5 м3, арматура 10 мм – 110 метров, 9 мм – 35 метров.

Срок поставки тепличной конструкции - 4 недели с момента получения аванса.

Порядок оплаты: оговаривается.

www.promgidroponica.ru

Системы отопления теплиц

Отопление теплицы нужно для выращивания в зимнее время различных овощей, например, огурцов или помидоров. Успешное их выращивание возможно только при соблюдении определенного температурного режима. Для этого необходимо ставить качественные системы отопления теплиц, которые и создадут такой режим. Если системы отопления теплицы смонтированы правильно и отвечают всем требованиям, то и урожай будет максимально возможным для данных условий.

Способы отопления теплиц

Существует несколько способов отопления теплиц и соответственно самих систем отопления.

  1. Система газового отопления теплиц. В ее основе непосредственно газопровод, подводящий газ, регулирующая система, автоматические контрольно-измерительные приборы безопасности пользования газом. Воздух в данном случае подогревается теплогенератором в определенном месте и затем по воздуховоду передается в теплицу. Существенным минусом такой системы является сухость отапливаемого помещения, а для некоторых растений такой воздух губителен.
  2. Система инфракрасного отопления теплиц. Огромное преимущество такой системы в том, что она нагревает не воздух, а предметы, в данном случае почву, растения и непосредственно стенки теплицы. При такой системе отопления воздух не сушится и нет никаких выбросов продуктов сгорания в окружающую среду. В систему инфракрасного отопления теплиц входит сам инфракрасный обогреватель, терморегулятор (он регулирует температуру автоматически). Одного инфракрасного обогревателя мощностью 1 кВт хватает на обогрев 15 кв. метров площади теплицы в зимнее время, расход эл/энергии при этом составит 500 Вт в час.
  3. Система водяного отопления теплиц. В нее входит водогрейный газовый котел, снабженный отводом продуктов сгорания непосредственно в атмосферу. Такая система самая традиционная – теплоноситель (вода) нагревается в отопительном котле и с помощью циркуляционного насоса прокачивается по трубам, через радиаторы и конвекторы, отдавая тепло почве и воздуху в теплице. В системе водяного отопления, как правило, используются несколько контуров, для нагрева воздуха, бойлерной и почвы.

Отопление теплицы зимой

Отопление теплиц в зимний период дело не дешевое, энергозатраты доходят до 400 Вт на кв.м. Дело в том, что стенки теплиц изготовлены обычно из прозрачных материалов, термосопротивление которых достаточно низкое. Поэтому желательно при проектировании теплиц сразу находить решения, позволяющие снизить потребности в тепле. Теплицу желательно располагать в защищенном от ветра и солнечном месте.

Системы отопления теплиц выбираются непосредственно в зависимости от климата и потребности в тепле выращиваемых растений. Также имеет значение мощность системы освещения (так как это дополнительный источник тепла) и характер грунта. Выделяют тепло и органические удобрения, вносимые в грунт.

В настоящее время чаще всего для обогрева теплиц используют водяную систему. Она обеспечивает равномерное распределение тепла и это хорошо влияет на выращиваемые растения.

Для более эффективного обогрева всей теплицы стальные нержавеющие или металлопластиковые трубы размещаются в несколько ярусов. Обязательно необходимо предусмотреть систему прогрева грунта, желательно на глубине около 40 см. Трубы укладывают на дренирующий слой (не менее 30 см), а сверху насыпают плодородную почву толщиной больше 40 см. Шаг укладки этих труб должен составлять не менее 20 см.

Желательно систему отопления теплицы смонтировать так, чтобы было возможно регулировать температуру в трубах на различных ярусах. В системе подогрева грунта температура обычно устанавливается до 40°С, чтобы не пересыхала корневая система растений. В надпочвенном ярусе устанавливают температуру 70-80°С.

Мощность котла, тип топлива для него – выбор за вами (зависит от размера теплицы, материальных возможностей). В качестве топлива чаще всего используют газ.

В регионах, где зимняя температура опускается ниже -20°С, применяют комбинированную систему отопления. В дополнение к водяному отоплению подключают и воздушное отопление. Воздушный теплогенератор пропускает через себя воздух теплицы и подогревает его до температуры примерно 40°С. Далее, подогретый воздух равномерно распределяется по всей теплице при помощи сети воздуховодов, расположенных по ее периметру на высоте 2,5 метра.

Обогрев больших теплиц, например, площадью в тысячи квадратных метров, проводят с помощью мощных промышленных теплогенераторов напольной установки.

Отопление теплицы своими руками, видео

dizajn-sada.ru