Котельные установки и парогенераторы. Устройство котла гм 50


8 3 устройство и работа котла кв-гм-10-150

8.3. Устройство и работа котла КВ-ГМ-10-150

Котлы водогрейные газомазутные КВ-ГМ-10-150, КВ-ГМ-20-150, КВ-ГМ-30-150 предназначены для нагрева воды систем теплоснабжения до 150 °С, выполнены в горизонтальной компоновке и имеют топочную камеру с горизонтальным потоком топочных газов и конвективную шахту, по которым топочные газы идут снизу вверх. Котлы поставляются двумя транспортабельными блоками, имеют одинаковую конструкцию и отличаются лишь глубиной топочной камеры и конвективной шахты. Ширина между осями труб боковых экранов составляет 2580 мм. В табл. 8.1 приведены технические характеристики, а на рис. 8.2 – профиль котлов КВ-ГМ-10 (-20, -30).

Рис. 8.2. Продольный разрез водогрейных котлов КВ-ГМ-10 (-20, -30)

Таблица 8.1

п/п

Характеристика котла

КВ-ГМ-10

КВ-ГМ-20

КВ-ГМ-30

1.

Теплопроизводительность,

Гкал/ч, МВт

10 / 11,63

20 / 23,3

30 / 34,9

2.

КПД, %: на газе / на мазуте

91,9 / 88,4

91,9 / 88

91,2 / 87,7

3.

Расход топлива: газ, м3/ч /

мазут, кг/ч

1260 / 1220

2520 / 2450

3680 / 3490

4.

Расход воды, т/ч

123,5

247

370

5.

Радиационная поверхность,

м2

53,6

106,6

126,9

6.

Конвективная поверхность,

м2

221,5

406,5

592,6

7.

Температура уходящих газов:

газ/мазут

185 / 230

190 / 242

160 / 250

8.

Гидравлическое сопротивле-

ние, кгс/см2

1,5

2,3

1,9

9.

Глубина топки L1, мм

3904

6384

8484

10.

Глубина конвективной шах-

ты L2, мм

768

1536

2300

11.

Длина котла L3, мм

6500

9700

11 800

12.

Общая длина котла L4, мм

8350

10 540

13 530

Топочная камера (топочный блок) полностью экранирована трубами диаметром 60 × 3 мм с шагом 64 мм, которые образуют:

• левый и правый боковые экраны топки – вертикальные трубы, приваренные к нижним и верхним коллекторам;

• передний (фронтовой) экран – изогнутые трубы, которые экранируют фронт и под (низ) топки; трубы приварены к переднему (фронтовому) и дальнему (подовому) коллекторам; передний (фронтовой) коллектор расположен ближе к поду, а над ним установлена горелка;

• промежуточный (поворотный) экран – вертикально-изогнутые трубы, установленные в два ряда, которые приварены к верхнему и нижнему коллекторам и выполнены в виде газоплотного экрана; поворотный экран не доходит до потолка топки, оставляя окно для прохода топочных газов из топки в камеру догорания.

Конвективный блок (шахта) имеет:

• фестонный экран – вертикально-изогнутые трубы, приваренные к верхнему и нижнему коллекторам, причем в верхней части трубы выполнены в виде газоплотного цельносварного экрана, а в нижней части стены трубы разведены в четырехрядный фестон; фестонный экран является одновременно задним экраном топки;

• заднюю стенку – вертикальные трубы, приваренные к верхнему и нижнему коллекторам;

• левую и правую боковые стенки шахты – вертикальные стояки (трубы диметром 83 × 3,5 мм, установленные с шагом 128 мм), приваренные к верхним и нижним коллекторам, а в эти стояки вварены три пакета горизонтально расположенных U-образных ширм, выполненных из труб диаметром 28 × 3 мм.

На фронтовой стенке топки устанавливается одна газомазутная горелка РГМГ. Между промежуточным (поворотным) экраном топки и фестонным экраном расположена камера догорания. В соответствующих местах верхних и нижних коллекторов экранов топки и стенок конвективной шахты установлены заглушки (перегородки) для обеспечения многоходового движения воды по трубам – вверх, вниз и так далее. Для поддержания скоростей движения в пределах 0,9…1,9 м/с каждый тип котла имеет раз- личное число ходов воды.

Трубы задней стенки шахты имеют диаметр 60 × 3 мм и установлены с шагом 64 мм, а трубы фестонного экрана – диаметр 60 × 3 мм и установлены с шагом s1 = 256 мм и s2 = 180 мм. Все коллекторы и перепускные трубы котла имеют диаметр 219 × 10 мм. Все верхние коллекторы топки и конвективной шахты имеют воздушники для выпуска воздуха (при заполнении котла водой), а нижние – спускные вентили.

Газовоздушный тракт. Топливо и воздух подаются в горелку, а в топке образуется факел горения.

Теплота от топочных газов в топке передается всем экранным трубам (радиационным поверхностям нагрева), а от труб теплота передается воде, циркулирующей по экранам. Из топки, огибая сверху промежуточный (поворотный) газоплотный экран, топочные газы входят в камеру догорания, затем внизу проходят четырехрядный фестон, попадают в конвективную шахту, где теплота передается воде, циркулирующей по пакетам секций (ширм) и, пройдя шахту снизу вверх, топочные газы дымососом удаляются в дымовую трубу и в атмосферу.

Для удаления загрязнений и отложений с наружной поверхности труб конвективной шахты котлы оборудуются дробеочисткой, использующей чугунную дробь, которая подается в конвективную шахту.

Движение воды в котле КВ-ГМ-10-150 показано на рис. 8.3.

Обратная сетевая вода с температурой 70 °С сетевым насосом подается в дальнюю (от фронта) часть нижнего коллектора левого бокового топочного экрана и распределяется по нему до заглушки.

После ряда подъемно-опускных движений по левому боковому экрану вода из нижнего коллектора по перепускной трубе переходит в фронтовой верхний коллектор переднего (фронтового) экрана.

Рис. 8.3. Схема циркуляции воды в котле КВ-ГМ-10-150 (КВ-ГМ-11,6-150):

– нижние коллекторы; – верхние коллекторы

По левой стороне фронтового и подового экрана вода поступает в нижний, дальний коллектор, откуда после ряда подъемно-опускных движений по правой стороне экрана вновь возвращается в фронтовой верхний коллектор. По перепускной трубе вода поступает в нижний коллектор правого бокового топочного экрана и после ряда подъемно-опускных движений по нему, из нижнего коллектора, по перепускной трубе, переходит в нижний коллектор поворотного (промежуточного) экрана. После ряда подъемно-опускных движений по промежуточному экрану вода из нижнего коллектора, по перепускной трубе переходит в нижний коллектор фестонного экрана, проходит его, поднимаясь и опускаясь, и из верхнего коллектора фестонного экрана поступает в верхний коллектор правой боковой стены конвективной шахты.

По стоякам и U-образным пакетам секций вода проходит сверху вниз правую боковую стенку шахты и из нижнего коллектора переходит в нижний коллектор задней стены конвективной шахты. После ряда подъемно-опускных движений из верхнего коллектора заднего экрана вода переходит в верхний коллектор левой боковой стены конвективной шахты и, проходя по стоякам и U-образным ширмам сверху вниз, вода из нижнего коллектора с температурой 150°С идет в теплосеть.

Движение воды в водогрейном газомазутном котле КВ-ГМ-20-150 показано на рис. 8.4.

Рис. 8.4. Схема циркуляции воды в котле КВ-ГМ-20-150 (КВ-ГМ-23,3-150):

– нижние коллекторы; – верхние коллекторы

Рис. 8.5. Схема циркуляции воды в котле КВ-ГМ-30-150 (КВ-ГМ-35-150):

– нижние коллекторы; – верхние коллекторы

Движение воды в водогрейном газомазутном котле КВ-ГМ-30-150 показано на рис. 8.5.

Обмуровка всех котлов облегченная, закрепляемая на трубах. Кирпичная кладка имеется лишь под трубами подового экрана и на фронтовой стене, в которой выкладывается амбразура для горелки.

8.4. Устройство и работа котла КВ-ГМ-50-150

Котел водогрейный газомазутный КВ-ГМ-50-150, теплопроизводительностью 50 Гкал/ч (58 МВт), предназначен для нагрева воды систем теплоснабжения до 150 °С и может быть использован как в отопительном основном режиме – 70…150, так и в пиковом – 100…150 °С. Теплогенератор имеет П-образную компоновку, включающую топочный и конвективный блоки. Котел КВ-ГМ-100-150 имеет аналогичную конструкцию и отличаются лишь глубиной топочной и конвективной шахты, а ширина обоих котлов по осям колонн – 5700 мм.

Котлы рассчитаны на рабочее давление воды 2,5 МПа (25 кгс/см2).

В табл. 8.30, 8.33 [5] приведены технические характеристики и комплектация котлов КВ-ГМ-50, КВ-ГМ-100, а на рис. 8.6 представлен профиль котла КВ-ГМ-100.

Топочная камера экранирована трубами диаметром 60 × 3 мм с шагом 64 мм, которые соответственно образуют:

• передний (фронтовой) экран – вертикальные трубы, приваренные к верхнему, нижнему, а также двум (верхнему и нижнему) промежуточным коллекторам; промежуточные коллекторы по краям соединены между собой перепускными трубами, а между коллекторами установлены горелки;

• левый боковой экран – вертикально-изогнутые трубы, приваренные к верхнему и нижнему коллекторам, которые экранируют левую боковую стенку и потолок топки до середины, причем верхний коллектор длиннее нижнего на 1/3 и эта удлиненная часть коллектора находится в конвективной шахте, являясь одновременно верхним коллектором бокового экрана конвективной поверхности нагрева;

• правый боковой экран – выполнен аналогично левому;

• промежуточный экран – вертикальные (укороченные) трубы, приваренные к верхнему и нижнему коллекторам, которые выполнены в виде газоплотного экрана, разделяющего топку от конвективной шахты; причем промежуточный экран не доходит до потолка топки, оставляя окно для прохода топочных газов из топки в конвективную шахту.

В соответствующих местах верхнего и нижнего коллекторов боковых топочных экранов установлены заглушки для обеспечения многоходового движения воды по экранным трубам – вниз и вверх.

Конвективный блок (конвективная шахта) имеет:

• правую боковую стенку шахты – вертикальные стояки-трубы диметром 83 × 3,5 мм, установленные с шагом 128 мм, приваренные к верхним и промежуточным коллекторам, а в эти стояки вварены три пакета горизонтально расположенных U-образных ширм, выполненных из труб диаметром 28 × 3 мм; кроме того, все стояки сдвинуты относительно друг друга поперек продольной оси экрана на 64 мм, что обеспечивает размещение U-образных пакетов ширм в виде гребенок – в шахматном порядке с ша- гом s1 = 64 и s2 = 40 мм;

• правый потолочный экран конвективной шахты – изогнутые трубы, которые экранируют правую стенку и потолок до середины конвективной шахты, и приварены соответственно к промежуточному и верхнему коллекторам конвективной шахты;

• левую боковую стенку и левый потолочный экран конвективной шахты – выполнены аналогично правой стенки;

• заднюю стенку – вертикальные трубы диаметром 60 × 3 мм, установленные с шагом 64 мм, которые приварены к верхнему и нижнему коллекторам задней стенки шахты.

Все экранные трубы топки и стояки конвективной шахты приварены непосредственно к коллекторам-камерам диаметром 273 × 11 мм. Все верхние коллекторы топки и конвективной шахты имеют воздушники для выпуска воздуха, а нижние – спускные вентили.

Котлы не имеют каркаса. Обмуровка котла облегченная, натрубная, толщиной 110 мм, состоит из трех слоев: шамотобетона, совелитовых плит, минераловатных матрацев и магнезиальной обмазки.

Взрывные предохранительные клапаны установлены на потолке топочной камеры. Нижние коллекторы фронтового, промежуточного и заднего экранов, а также боковых стен конвективной шахты опираются на портал. Опора, расположенная в середине нижнего коллектора промежуточного экрана, является неподвижной, а остальные опоры – скользящие. На фронтовой стенке котлов КВ-ГМ-50 установлены две газомазутные горелки с ротационными форсунками, на котлах КВ-ГМ-100 – три такие же горелки, причем третья горелка размещается во втором ряду сверху – на верхнем ярусе.

Газовоздушный тракт. Топливо и воздух подаются в горелки, а в топке образуется факел горения.

Теплота от топочных газов в топке, за счет радиационного и конвективного теплообмена, передается всем экранным трубам (радиационным поверхностям нагрева), и от труб теплота передается воде, циркулирующей по экранам. Из топки, огибая сверху промежуточный газоплотный экран, топочные газы входят в конвективную шахту, где теплота передается воде, циркулирующей по пакетам секций (ширм), и, пройдя шахту сверху вниз, топочные газы дымососом удаляются в дымовую трубу, а затем в атмосферу.

Для удаления загрязнений, летучей сажи и отложений с наружной поверхности труб конвективной шахты котлы оборудуются очистительной установкой, использующей чугунную дробь, которая подается в конвективную шахту сверху – дробеочистка.

Принудительная циркуляция воды в котле возможна в основном (70…150 °С) и пиковом (100…150 °С) режимах работы, которые представлены на рис. 6.5.

Контуры принудительной циркуляции воды. Основной режим движения воды представлен на рис. 8.4, а.

Рис. 8.6. Схема движения воды в котле КВ-ГМ-50-150:

а – основной режим; б – пиковый режим;

1, 2, 3 – фронтовой, боковые и промежуточный экраны топки; 4 – потолочный экран конвективной шахты; 5 – боковые стенки, стояки и пакеты U-образных ширм конвективной шахты; 6 – задняя стенка шахты;

– верхние; – промежуточные; – нижние коллекторы

Обратная сетевая вода с температурой 70 °С сетевым насосом подается в нижний коллектор фронтового (переднего) экрана, затем поднимается по трубам до нижнего промежуточного коллектора, по перепускным трубам переходит в верхний промежуточный коллектор, откуда по экранным трубам вода поступает в верхний коллектор фронтового экрана. Двумя потоками по перепускным трубам вода переходит в верхние коллекторы левого и правого боковых экранов, распределяется по коллекторам до заглушек, откуда по ближней (относительно фронта котла) части экранных труб опускается в нижние коллекторы боковых экранов и проходит по ним до заглушек.

После многоходового движения воды по экранным трубам боковых экранов, из верхних коллекторов боковых экранов, двумя потоками по перепускным трубам, вода переходит в верхние коллекторы промежуточного экрана, проходит через экран сверху вниз. Из нижнего коллектора промежуточного экрана, двумя потоками по перепускным трубам, вода переходит в нижние коллекторы боковых стен конвективной шахты. Далее пройдя стояки и три конвективных U-образных пакета секций (ширм) снизу вверх, вода поступает вначале в промежуточный коллектор, а затем по экранным изогнутым трубам переходит в верхние коллекторы конвективной шахты.

Из верхних коллекторов конвективной шахты, двумя потоками по перепускным трубам, вода переходит в верхние коллекторы задней стенки шахты, проходит по трубам сверху вниз до нижнего коллектора задней стенки, откуда нагретая до 150 °С вода идет в теплосеть.

Пиковый режим (рис. 8.4, б). Обратная сетевая вода с температурой 100…105 °С сетевым насосом подается в котел двумя потоками: один в нижний коллектор фронтового топочного экрана, а другой в нижний коллектор задней стенки конвективной шахты. Первый поток проходит фронтовой экран (через промежуточные коллекторы) и из верхнего коллектора по перепускным трубам переходит в верхние коллекторы боковых экранов топки. Выполняя многоходовое движение воды по экранным трубам, вода из верхних коллекторов боковых экранов переходит в промежуточный экран, опускается по трубам вниз и из нижнего коллектора идет в теплосеть с температурой 150 °С.

Второй поток воды поднимается по трубам задней стенки конвективной шахты и из верхнего коллектора двумя потоками переходит в верхние коллекторы боковых экранов конвективной шахты. Опускаясь, вода проходит боковые экраны конвективной шахты, промежуточные коллекторы, а затем по стоякам вода проходит три пакета конвективных U-образных пакета секций (ширм), и из нижних коллекторов боковых стен шахты вода идет в теплосеть с температурой 150 °С.

Лекция 7

9. Хвостовые поверхности нагрева

9.1. Коррозия поверхностей нагрева

Внутри труб происходит нагрев воды, парообразование, в связи с этим возможна коррозия от газов, растворенных в воде, а также отложение накипи на стенках труб. С наружной стороны поверхностей нагрева проходит процесс горения топлива, а также износ, загрязнение летучей золой и сажей. Очистку внешних поверхностей нагрева производят паром или сжатым воздухом с помощью обдувочных устройств.

Обдувочный аппарат представляет собой трубопровод с отверстиями или соплами, который подводится в газоходы котла, вращается вокруг оси, а пар или сжатый воздух, выходя с высокой скоростью, очищает внешние поверхности. Обдувку поверхностей нагрева котлов и экономайзеров необходимо начинать с обдувочного устройства, расположенного ближе к топке, и дальнейшую обдувку проводить по ходу газов и при полностью открытых лопатках направляющего аппарата дымососа, строго следя за тягой. Давление пара в обдувочном аппарате должно быть не менее 0,75 МПа (7,5 кг/см2), а время обдувки не более 2 мин.

Высокотемпературная коррозия образуется при сжигании топлива, когда в продуктах сгорания имеются продукты (окислы) ванадия, отрицательно действующие на металл экранных труб и пароперегревателя. Для снижения этой коррозии необходимо сжигать топливо (обычно мазут) с меньшим коэффициентом избытка воздуха. Эту коррозию называют ванадиевой и ей подвержены экранные трубы топки.

Низкотемпературная коррозия образуется в результате конденсации капелек влаги (водяных паров) из продуктов сгорания (дымовых газов), т.е. образуется эффект точки «росы». Обычно эта температура зависит от вида сжигаемого топлива, состава продуктов сгорания и составляет + 65 °С при работе котлов на природном газе или малосернистом мазуте и + 90...110 °С – при работе на сернистом или высокосернистом мазуте. В продуктах сгорания имеются сернистые соединения, которые соединяются с каплями влаги и образуют сернокислые кислоты, отрицательно действующие на металлическую стенку. Поэтому для исключения низкотемпературной коррозии (т.е. конденсации водяных паров из топочных газов на внешней поверхности труб) необходимо, чтобы температура стенки была на 5…10 °С выше температуры точки «росы». Этому виду коррозии подвержены водогрейные котлы, воздухоподогреватели, водяные экономайзеры и др.

textarchive.ru

Устройство и работа котла КВ-ГМ-50-150



 Если Вам понравился сайт нажмите на кнопку выше

Котел водогрейный газомазутный КВ-ГМ-50-150, теплопроизводительностью 50 Гкал/ч (58 МВт), предназначен для нагрева воды систем теплоснабжения до 150 °С и может быть использован как в отопительном основном режиме – 70…150, так и в пиковом – 100…150 °С. Теплогенератор имеет П-образную компоновку, включающую топочный и конвективный блоки. Котел КВ-ГМ-100-150 имеет аналогичную конструкцию и отличаются лишь глубиной топочной и конвективной шахты, а ширина обоих котлов по осям колонн – 5700 мм.

Котлы рассчитаны на рабочее давление воды 2,5 МПа (25 кгс/см2).

В табл. 8.30, 8.33 [5] приведены технические характеристики и комплектация котлов КВ-ГМ-50, КВ-ГМ-100, а на рис. 8.6 представлен профиль котла КВ-ГМ-100.

Топочная камера экранирована трубами диаметром 60 × 3 мм с шагом 64 мм, которые соответственно образуют:

• передний (фронтовой) экран – вертикальные трубы, приваренные к верхнему, нижнему, а также двум (верхнему и нижнему) промежуточным коллекторам; промежуточные коллекторы по краям соединены между собой перепускными трубами, а между коллекторами установлены горелки;

• левый боковой экран – вертикально-изогнутые трубы, приваренные к верхнему и нижнему коллекторам, которые экранируют левую боковую стенку и потолок топки до середины, причем верхний коллектор длиннее нижнего на 1/3 и эта удлиненная часть коллектора находится в конвективной шахте, являясь одновременно верхним коллектором бокового экрана конвективной поверхности нагрева;

• правый боковой экран – выполнен аналогично левому;

• промежуточный экран – вертикальные (укороченные) трубы, приваренные к верхнему и нижнему коллекторам, которые выполнены в виде газоплотного экрана, разделяющего топку от конвективной шахты; причем промежуточный экран не доходит до потолка топки, оставляя окно для прохода топочных газов из топки в конвективную шахту.

В соответствующих местах верхнего и нижнего коллекторов боковых топочных экранов установлены заглушки для обеспечения многоходового движения воды по экранным трубам – вниз и вверх.

Конвективный блок (конвективная шахта) имеет:

• правую боковую стенку шахты – вертикальные стояки-трубы диметром 83 × 3,5 мм, установленные с шагом 128 мм, приваренные к верхним и промежуточным коллекторам, а в эти стояки вварены три пакета горизонтально расположенных U-образных ширм, выполненных из труб диаметром 28 × 3 мм; кроме того, все стояки сдвинуты относительно друг друга поперек продольной оси экрана на 64 мм, что обеспечивает размещение U-образных пакетов ширм в виде гребенок – в шахматном порядке с ша- гом s1 = 64 и s2 = 40 мм;

• правый потолочный экран конвективной шахты – изогнутые трубы, которые экранируют правую стенку и потолок до середины конвективной шахты, и приварены соответственно к промежуточному и верхнему коллекторам конвективной шахты;

• левую боковую стенку и левый потолочный экран конвективной шахты – выполнены аналогично правой стенки;

• заднюю стенку – вертикальные трубы диаметром 60 × 3 мм, установленные с шагом 64 мм, которые приварены к верхнему и нижнему коллекторам задней стенки шахты.

Все экранные трубы топки и стояки конвективной шахты приварены непосредственно к коллекторам-камерам диаметром 273 × 11 мм. Все верхние коллекторы топки и конвективной шахты имеют воздушники для выпуска воздуха, а нижние – спускные вентили.

Котлы не имеют каркаса. Обмуровка котла облегченная, натрубная, толщиной 110 мм, состоит из трех слоев: шамотобетона, совелитовых плит, минераловатных матрацев и магнезиальной обмазки.

Взрывные предохранительные клапаны установлены на потолке топочной камеры. Нижние коллекторы фронтового, промежуточного и заднего экранов, а также боковых стен конвективной шахты опираются на портал. Опора, расположенная в середине нижнего коллектора промежуточного экрана, является неподвижной, а остальные опоры – скользящие. На фронтовой стенке котлов КВ-ГМ-50 установлены две газомазутные горелки с ротационными форсунками, на котлах КВ-ГМ-100 – три такие же горелки, причем третья горелка размещается во втором ряду сверху – на верхнем ярусе.

Газовоздушный тракт.Топливо и воздух подаются в горелки, а в топке образуется факел горения.

Теплота от топочных газов в топке, за счет радиационного и конвективного теплообмена, передается всем экранным трубам (радиационным поверхностям нагрева), и от труб теплота передается воде, циркулирующей по экранам. Из топки, огибая сверху промежуточный газоплотный экран, топочные газы входят в конвективную шахту, где теплота передается воде, циркулирующей по пакетам секций (ширм), и, пройдя шахту сверху вниз, топочные газы дымососом удаляются в дымовую трубу, а затем в атмосферу.

Для удаления загрязнений, летучей сажи и отложений с наружной поверхности труб конвективной шахты котлы оборудуются очистительной установкой, использующей чугунную дробь, которая подается в конвективную шахту сверху – дробеочистка.

Принудительная циркуляция воды в котле возможна в основном (70…150 °С) и пиковом (100…150 °С) режимах работы, которые представлены на рис. 6.5.

Контуры принудительной циркуляции воды.Основной режим движения воды представлен на рис. 8.4, а.

Рис. 8.6. Схема движения воды в котле КВ-ГМ-50-150:

а – основной режим; б – пиковый режим;

1, 2, 3 – фронтовой, боковые и промежуточный экраны топки; 4 – потолочный экран конвективной шахты; 5 – боковые стенки, стояки и пакеты U-образных ширм конвективной шахты; 6 – задняя стенка шахты;

– верхние; – промежуточные; – нижние коллекторы

Обратная сетевая вода с температурой 70 °С сетевым насосом подается в нижний коллектор фронтового (переднего) экрана, затем поднимается по трубам до нижнего промежуточного коллектора, по перепускным трубам переходит в верхний промежуточный коллектор, откуда по экранным трубам вода поступает в верхний коллектор фронтового экрана. Двумя потоками по перепускным трубам вода переходит в верхние коллекторы левого и правого боковых экранов, распределяется по коллекторам до заглушек, откуда по ближней (относительно фронта котла) части экранных труб опускается в нижние коллекторы боковых экранов и проходит по ним до заглушек.

После многоходового движения воды по экранным трубам боковых экранов, из верхних коллекторов боковых экранов, двумя потоками по перепускным трубам, вода переходит в верхние коллекторы промежуточного экрана, проходит через экран сверху вниз. Из нижнего коллектора промежуточного экрана, двумя потоками по перепускным трубам, вода переходит в нижние коллекторы боковых стен конвективной шахты. Далее пройдя стояки и три конвективных U-образных пакета секций (ширм) снизу вверх, вода поступает вначале в промежуточный коллектор, а затем по экранным изогнутым трубам переходит в верхние коллекторы конвективной шахты.

Из верхних коллекторов конвективной шахты, двумя потоками по перепускным трубам, вода переходит в верхние коллекторы задней стенки шахты, проходит по трубам сверху вниз до нижнего коллектора задней стенки, откуда нагретая до 150 °С вода идет в теплосеть.

Пиковый режим (рис. 8.4, б). Обратная сетевая вода с температурой 100…105 °С сетевым насосом подается в котел двумя потоками: один в нижний коллектор фронтового топочного экрана, а другой в нижний коллектор задней стенки конвективной шахты. Первый поток проходит фронтовой экран (через промежуточные коллекторы) и из верхнего коллектора по перепускным трубам переходит в верхние коллекторы боковых экранов топки. Выполняя многоходовое движение воды по экранным трубам, вода из верхних коллекторов боковых экранов переходит в промежуточный экран, опускается по трубам вниз и из нижнего коллектора идет в теплосеть с температурой 150 °С.

Второй поток воды поднимается по трубам задней стенки конвективной шахты и из верхнего коллектора двумя потоками переходит в верхние коллекторы боковых экранов конвективной шахты. Опускаясь, вода проходит боковые экраны конвективной шахты, промежуточные коллекторы, а затем по стоякам вода проходит три пакета конвективных U-образных пакета секций (ширм), и из нижних коллекторов боковых стен шахты вода идет в теплосеть с температурой 150 °С.

Лекция 7

referatsao.nugaspb.ru
  • Карта сайта
  • xreff.ru

    Устройство и работа котла КВ-ГМ-50-150

    Котел водогрейный газомазутный КВ-ГМ-50-150, теплопроизводительностью 50 Гкал/ч (58 МВт), предназначен для нагрева воды систем теплоснабжения до 150 °С и может быть использован как в отопительном основном режиме – 70…150, так и в пиковом – 100…150 °С. Теплогенератор имеет П-образную компоновку, включающую топочный и конвективный блоки. Котел КВ-ГМ-100-150 имеет аналогичную конструкцию и отличаются лишь глубиной топочной и конвективной шахты, а ширина обоих котлов по осям колонн – 5700 мм.

    Котлы рассчитаны на рабочее давление воды 2,5 МПа (25 кгс/см2).

    В табл. 8.30, 8.33 [5] приведены технические характеристики и комплектация котлов КВ-ГМ-50, КВ-ГМ-100, а на рис. 8.6 представлен профиль котла КВ-ГМ-100.

    Топочная камера экранирована трубами диаметром 60 × 3 мм с шагом 64 мм, которые соответственно образуют:

    • передний (фронтовой) экран – вертикальные трубы, приваренные к верхнему, нижнему, а также двум (верхнему и нижнему) промежуточным коллекторам; промежуточные коллекторы по краям соединены между собой перепускными трубами, а между коллекторами установлены горелки;

    • левый боковой экран – вертикально-изогнутые трубы, приваренные к верхнему и нижнему коллекторам, которые экранируют левую боковую стенку и потолок топки до середины, причем верхний коллектор длиннее нижнего на 1/3 и эта удлиненная часть коллектора находится в конвективной шахте, являясь одновременно верхним коллектором бокового экрана конвективной поверхности нагрева;

    • правый боковой экран – выполнен аналогично левому;

    • промежуточный экран – вертикальные (укороченные) трубы, приваренные к верхнему и нижнему коллекторам, которые выполнены в виде газоплотного экрана, разделяющего топку от конвективной шахты; причем промежуточный экран не доходит до потолка топки, оставляя окно для прохода топочных газов из топки в конвективную шахту.

    В соответствующих местах верхнего и нижнего коллекторов боковых топочных экранов установлены заглушки для обеспечения многоходового движения воды по экранным трубам – вниз и вверх.

    Конвективный блок (конвективная шахта) имеет:

    • правую боковую стенку шахты – вертикальные стояки-трубы диметром 83 × 3,5 мм, установленные с шагом 128 мм, приваренные к верхним и промежуточным коллекторам, а в эти стояки вварены три пакета горизонтально расположенных U-образных ширм, выполненных из труб диаметром 28 × 3 мм; кроме того, все стояки сдвинуты относительно друг друга поперек продольной оси экрана на 64 мм, что обеспечивает размещение U-образных пакетов ширм в виде гребенок – в шахматном порядке с ша- гом s1 = 64 и s2 = 40 мм;

    • правый потолочный экран конвективной шахты – изогнутые трубы, которые экранируют правую стенку и потолок до середины конвективной шахты, и приварены соответственно к промежуточному и верхнему коллекторам конвективной шахты;

    • левую боковую стенку и левый потолочный экран конвективной шахты – выполнены аналогично правой стенки;

    • заднюю стенку – вертикальные трубы диаметром 60 × 3 мм, установленные с шагом 64 мм, которые приварены к верхнему и нижнему коллекторам задней стенки шахты.

    Все экранные трубы топки и стояки конвективной шахты приварены непосредственно к коллекторам-камерам диаметром 273 × 11 мм. Все верхние коллекторы топки и конвективной шахты имеют воздушники для выпуска воздуха, а нижние – спускные вентили.

    Котлы не имеют каркаса. Обмуровка котла облегченная, натрубная, толщиной 110 мм, состоит из трех слоев: шамотобетона, совелитовых плит, минераловатных матрацев и магнезиальной обмазки.

    Взрывные предохранительные клапаны установлены на потолке топочной камеры. Нижние коллекторы фронтового, промежуточного и заднего экранов, а также боковых стен конвективной шахты опираются на портал. Опора, расположенная в середине нижнего коллектора промежуточного экрана, является неподвижной, а остальные опоры – скользящие. На фронтовой стенке котлов КВ-ГМ-50 установлены две газомазутные горелки с ротационными форсунками, на котлах КВ-ГМ-100 – три такие же горелки, причем третья горелка размещается во втором ряду сверху – на верхнем ярусе.

    Газовоздушный тракт.Топливо и воздух подаются в горелки, а в топке образуется факел горения.

    Теплота от топочных газов в топке, за счет радиационного и конвективного теплообмена, передается всем экранным трубам (радиационным поверхностям нагрева), и от труб теплота передается воде, циркулирующей по экранам. Из топки, огибая сверху промежуточный газоплотный экран, топочные газы входят в конвективную шахту, где теплота передается воде, циркулирующей по пакетам секций (ширм), и, пройдя шахту сверху вниз, топочные газы дымососом удаляются в дымовую трубу, а затем в атмосферу.

    Для удаления загрязнений, летучей сажи и отложений с наружной поверхности труб конвективной шахты котлы оборудуются очистительной установкой, использующей чугунную дробь, которая подается в конвективную шахту сверху – дробеочистка.

    Принудительная циркуляция воды в котле возможна в основном (70…150 °С) и пиковом (100…150 °С) режимах работы, которые представлены на рис. 6.5.

    Контуры принудительной циркуляции воды.Основной режим движения воды представлен на рис. 8.4, а.

    Рис. 8.6. Схема движения воды в котле КВ-ГМ-50-150:

    а – основной режим; б – пиковый режим;

    1, 2, 3 – фронтовой, боковые и промежуточный экраны топки; 4 – потолочный экран конвективной шахты; 5 – боковые стенки, стояки и пакеты U-образных ширм конвективной шахты; 6 – задняя стенка шахты;

    – верхние; – промежуточные; – нижние коллекторы

    Обратная сетевая вода с температурой 70 °С сетевым насосом подается в нижний коллектор фронтового (переднего) экрана, затем поднимается по трубам до нижнего промежуточного коллектора, по перепускным трубам переходит в верхний промежуточный коллектор, откуда по экранным трубам вода поступает в верхний коллектор фронтового экрана. Двумя потоками по перепускным трубам вода переходит в верхние коллекторы левого и правого боковых экранов, распределяется по коллекторам до заглушек, откуда по ближней (относительно фронта котла) части экранных труб опускается в нижние коллекторы боковых экранов и проходит по ним до заглушек.

    После многоходового движения воды по экранным трубам боковых экранов, из верхних коллекторов боковых экранов, двумя потоками по перепускным трубам, вода переходит в верхние коллекторы промежуточного экрана, проходит через экран сверху вниз. Из нижнего коллектора промежуточного экрана, двумя потоками по перепускным трубам, вода переходит в нижние коллекторы боковых стен конвективной шахты. Далее пройдя стояки и три конвективных U-образных пакета секций (ширм) снизу вверх, вода поступает вначале в промежуточный коллектор, а затем по экранным изогнутым трубам переходит в верхние коллекторы конвективной шахты.

    Из верхних коллекторов конвективной шахты, двумя потоками по перепускным трубам, вода переходит в верхние коллекторы задней стенки шахты, проходит по трубам сверху вниз до нижнего коллектора задней стенки, откуда нагретая до 150 °С вода идет в теплосеть.

    Пиковый режим (рис. 8.4, б). Обратная сетевая вода с температурой 100…105 °С сетевым насосом подается в котел двумя потоками: один в нижний коллектор фронтового топочного экрана, а другой в нижний коллектор задней стенки конвективной шахты. Первый поток проходит фронтовой экран (через промежуточные коллекторы) и из верхнего коллектора по перепускным трубам переходит в верхние коллекторы боковых экранов топки. Выполняя многоходовое движение воды по экранным трубам, вода из верхних коллекторов боковых экранов переходит в промежуточный экран, опускается по трубам вниз и из нижнего коллектора идет в теплосеть с температурой 150 °С.

    Второй поток воды поднимается по трубам задней стенки конвективной шахты и из верхнего коллектора двумя потоками переходит в верхние коллекторы боковых экранов конвективной шахты. Опускаясь, вода проходит боковые экраны конвективной шахты, промежуточные коллекторы, а затем по стоякам вода проходит три пакета конвективных U-образных пакета секций (ширм), и из нижних коллекторов боковых стен шахты вода идет в теплосеть с температурой 150 °С.

    Лекция 7

    4-i-5.ru

    Устройство и работа котла кв-гм-50-150

    Котел водогрейный газомазутный КВ-ГМ-50-150, теплопроизводительностью 50 Гкал/ч (58 МВт), предназначен для нагрева воды систем теплоснабжения до 150 °С и может быть использован как в отопительном основном режиме – 70…150, так и в пиковом – 100…150 °С. Теплогенератор имеет П-образную компоновку, включающую топочный и конвективный блоки. Котел КВ-ГМ-100-150 имеет аналогичную конструкцию и отличаются лишь глубиной топочной и конвективной шахты, а ширина обоих котлов по осям колонн – 5700 мм.

    Котлы рассчитаны на рабочее давление воды 2,5 МПа (25 кгс/см2).

    В табл. 8.30, 8.33 [5] приведены технические характеристики и комплектация котлов КВ-ГМ-50, КВ-ГМ-100, а на рис. 8.6 представлен профиль котла КВ-ГМ-100.

    Топочная камера экранирована трубами диаметром 60 × 3 мм с шагом 64 мм, которые соответственно образуют:

    • передний (фронтовой) экран – вертикальные трубы, приваренные к верхнему, нижнему, а также двум (верхнему и нижнему) промежуточным коллекторам; промежуточные коллекторы по краям соединены между собой перепускными трубами, а между коллекторами установлены горелки;

    • левый боковой экран – вертикально-изогнутые трубы, приваренные к верхнему и нижнему коллекторам, которые экранируют левую боковую стенку и потолок топки до середины, причем верхний коллектор длиннее нижнего на 1/3 и эта удлиненная часть коллектора находится в конвективной шахте, являясь одновременно верхним коллектором бокового экрана конвективной поверхности нагрева;

    • правый боковой экран – выполнен аналогично левому;

    • промежуточный экран – вертикальные (укороченные) трубы, приваренные к верхнему и нижнему коллекторам, которые выполнены в виде газоплотного экрана, разделяющего топку от конвективной шахты; причем промежуточный экран не доходит до потолка топки, оставляя окно для прохода топочных газов из топки в конвективную шахту.

    В соответствующих местах верхнего и нижнего коллекторов боковых топочных экранов установлены заглушки для обеспечения многоходового движения воды по экранным трубам – вниз и вверх.

    Конвективный блок (конвективная шахта) имеет:

    • правую боковую стенку шахты – вертикальные стояки-трубы диметром 83 × 3,5 мм, установленные с шагом 128 мм, приваренные к верхним и промежуточным коллекторам, а в эти стояки вварены три пакета горизонтально расположенных U-образных ширм, выполненных из труб диаметром 28 × 3 мм; кроме того, все стояки сдвинуты относительно друг друга поперек продольной оси экрана на 64 мм, что обеспечивает размещение U-образных пакетов ширм в виде гребенок – в шахматном порядке с ша- гом s1 = 64 и s2 = 40 мм;

    • правый потолочный экран конвективной шахты – изогнутые трубы, которые экранируют правую стенку и потолок до середины конвективной шахты, и приварены соответственно к промежуточному и верхнему коллекторам конвективной шахты;

    • левую боковую стенку и левый потолочный экран конвективной шахты – выполнены аналогично правой стенки;

    • заднюю стенку – вертикальные трубы диаметром 60 × 3 мм, установленные с шагом 64 мм, которые приварены к верхнему и нижнему коллекторам задней стенки шахты.

    Все экранные трубы топки и стояки конвективной шахты приварены непосредственно к коллекторам-камерам диаметром 273 × 11 мм. Все верхние коллекторы топки и конвективной шахты имеют воздушники для выпуска воздуха, а нижние – спускные вентили.

    Котлы не имеют каркаса. Обмуровка котла облегченная, натрубная, толщиной 110 мм, состоит из трех слоев: шамотобетона, совелитовых плит, минераловатных матрацев и магнезиальной обмазки.

    Взрывные предохранительные клапаны установлены на потолке топочной камеры. Нижние коллекторы фронтового, промежуточного и заднего экранов, а также боковых стен конвективной шахты опираются на портал. Опора, расположенная в середине нижнего коллектора промежуточного экрана, является неподвижной, а остальные опоры – скользящие. На фронтовой стенке котлов КВ-ГМ-50 установлены две газомазутные горелки с ротационными форсунками, на котлах КВ-ГМ-100 – три такие же горелки, причем третья горелка размещается во втором ряду сверху – на верхнем ярусе.

    Газовоздушный тракт.Топливо и воздух подаются в горелки, а в топке образуется факел горения.

    Теплота от топочных газов в топке, за счет радиационного и конвективного теплообмена, передается всем экранным трубам (радиационным поверхностям нагрева), и от труб теплота передается воде, циркулирующей по экранам. Из топки, огибая сверху промежуточный газоплотный экран, топочные газы входят в конвективную шахту, где теплота передается воде, циркулирующей по пакетам секций (ширм), и, пройдя шахту сверху вниз, топочные газы дымососом удаляются в дымовую трубу, а затем в атмосферу.

    Для удаления загрязнений, летучей сажи и отложений с наружной поверхности труб конвективной шахты котлы оборудуются очистительной установкой, использующей чугунную дробь, которая подается в конвективную шахту сверху – дробеочистка.

    Принудительная циркуляция воды в котле возможна в основном (70…150 °С) и пиковом (100…150 °С) режимах работы, которые представлены на рис. 6.5.

    Контуры принудительной циркуляции воды.Основной режим движения воды представлен на рис. 8.4, а.

    устройство и работа котла кв-гм-50-150 - student2.ru

    Рис. 8.6. Схема движения воды в котле КВ-ГМ-50-150:

    а – основной режим; б – пиковый режим;

    1, 2, 3 – фронтовой, боковые и промежуточный экраны топки; 4 – потолочный экран конвективной шахты; 5 – боковые стенки, стояки и пакеты U-образных ширм конвективной шахты; 6 – задняя стенка шахты;

    – верхние; – промежуточные; – нижние коллекторы

    Обратная сетевая вода с температурой 70 °С сетевым насосом подается в нижний коллектор фронтового (переднего) экрана, затем поднимается по трубам до нижнего промежуточного коллектора, по перепускным трубам переходит в верхний промежуточный коллектор, откуда по экранным трубам вода поступает в верхний коллектор фронтового экрана. Двумя потоками по перепускным трубам вода переходит в верхние коллекторы левого и правого боковых экранов, распределяется по коллекторам до заглушек, откуда по ближней (относительно фронта котла) части экранных труб опускается в нижние коллекторы боковых экранов и проходит по ним до заглушек.

    После многоходового движения воды по экранным трубам боковых экранов, из верхних коллекторов боковых экранов, двумя потоками по перепускным трубам, вода переходит в верхние коллекторы промежуточного экрана, проходит через экран сверху вниз. Из нижнего коллектора промежуточного экрана, двумя потоками по перепускным трубам, вода переходит в нижние коллекторы боковых стен конвективной шахты. Далее пройдя стояки и три конвективных U-образных пакета секций (ширм) снизу вверх, вода поступает вначале в промежуточный коллектор, а затем по экранным изогнутым трубам переходит в верхние коллекторы конвективной шахты.

    Из верхних коллекторов конвективной шахты, двумя потоками по перепускным трубам, вода переходит в верхние коллекторы задней стенки шахты, проходит по трубам сверху вниз до нижнего коллектора задней стенки, откуда нагретая до 150 °С вода идет в теплосеть.

    Пиковый режим (рис. 8.4, б). Обратная сетевая вода с температурой 100…105 °С сетевым насосом подается в котел двумя потоками: один в нижний коллектор фронтового топочного экрана, а другой в нижний коллектор задней стенки конвективной шахты. Первый поток проходит фронтовой экран (через промежуточные коллекторы) и из верхнего коллектора по перепускным трубам переходит в верхние коллекторы боковых экранов топки. Выполняя многоходовое движение воды по экранным трубам, вода из верхних коллекторов боковых экранов переходит в промежуточный экран, опускается по трубам вниз и из нижнего коллектора идет в теплосеть с температурой 150 °С.

    Второй поток воды поднимается по трубам задней стенки конвективной шахты и из верхнего коллектора двумя потоками переходит в верхние коллекторы боковых экранов конвективной шахты. Опускаясь, вода проходит боковые экраны конвективной шахты, промежуточные коллекторы, а затем по стоякам вода проходит три пакета конвективных U-образных пакета секций (ширм), и из нижних коллекторов боковых стен шахты вода идет в теплосеть с температурой 150 °С.

    Лекция 7

    student2.ru

    8 3 устройство и работа котла кв-гм-10-150

    8.3. Устройство и работа котла КВ-ГМ-10-150

    Котлы водогрейные газомазутные КВ-ГМ-10-150, КВ-ГМ-20-150, КВ-ГМ-30-150 предназначены для нагрева воды систем теплоснабжения до 150 °С, выполнены в горизонтальной компоновке и имеют топочную камеру с горизонтальным потоком топочных газов и конвективную шахту, по которым топочные газы идут снизу вверх. Котлы поставляются двумя транспортабельными блоками, имеют одинаковую конструкцию и отличаются лишь глубиной топочной камеры и конвективной шахты. Ширина между осями труб боковых экранов составляет 2580 мм. В табл. 8.1 приведены технические характеристики, а на рис. 8.2 – профиль котлов КВ-ГМ-10 (-20, -30).

    Рис. 8.2. Продольный разрез водогрейных котлов КВ-ГМ-10 (-20, -30)

    Таблица 8.1

    п/п

    Характеристика котла

    КВ-ГМ-10

    КВ-ГМ-20

    КВ-ГМ-30

    1.

    Теплопроизводительность,

    Гкал/ч, МВт

    10 / 11,63

    20 / 23,3

    30 / 34,9

    2.

    КПД, %: на газе / на мазуте

    91,9 / 88,4

    91,9 / 88

    91,2 / 87,7

    3.

    Расход топлива: газ, м3/ч /

    мазут, кг/ч

    1260 / 1220

    2520 / 2450

    3680 / 3490

    4.

    Расход воды, т/ч

    123,5

    247

    370

    5.

    Радиационная поверхность,

    м2

    53,6

    106,6

    126,9

    6.

    Конвективная поверхность,

    м2

    221,5

    406,5

    592,6

    7.

    Температура уходящих газов:

    газ/мазут

    185 / 230

    190 / 242

    160 / 250

    8.

    Гидравлическое сопротивле-

    ние, кгс/см2

    1,5

    2,3

    1,9

    9.

    Глубина топки L1, мм

    3904

    6384

    8484

    10.

    Глубина конвективной шах-

    ты L2, мм

    768

    1536

    2300

    11.

    Длина котла L3, мм

    6500

    9700

    11 800

    12.

    Общая длина котла L4, мм

    8350

    10 540

    13 530

    Топочная камера (топочный блок) полностью экранирована трубами диаметром 60 × 3 мм с шагом 64 мм, которые образуют:

    • левый и правый боковые экраны топки – вертикальные трубы, приваренные к нижним и верхним коллекторам;

    • передний (фронтовой) экран – изогнутые трубы, которые экранируют фронт и под (низ) топки; трубы приварены к переднему (фронтовому) и дальнему (подовому) коллекторам; передний (фронтовой) коллектор расположен ближе к поду, а над ним установлена горелка;

    • промежуточный (поворотный) экран – вертикально-изогнутые трубы, установленные в два ряда, которые приварены к верхнему и нижнему коллекторам и выполнены в виде газоплотного экрана; поворотный экран не доходит до потолка топки, оставляя окно для прохода топочных газов из топки в камеру догорания.

    Конвективный блок (шахта) имеет:

    • фестонный экран – вертикально-изогнутые трубы, приваренные к верхнему и нижнему коллекторам, причем в верхней части трубы выполнены в виде газоплотного цельносварного экрана, а в нижней части стены трубы разведены в четырехрядный фестон; фестонный экран является одновременно задним экраном топки;

    • заднюю стенку – вертикальные трубы, приваренные к верхнему и нижнему коллекторам;

    • левую и правую боковые стенки шахты – вертикальные стояки (трубы диметром 83 × 3,5 мм, установленные с шагом 128 мм), приваренные к верхним и нижним коллекторам, а в эти стояки вварены три пакета горизонтально расположенных U-образных ширм, выполненных из труб диаметром 28 × 3 мм.

    На фронтовой стенке топки устанавливается одна газомазутная горелка РГМГ. Между промежуточным (поворотным) экраном топки и фестонным экраном расположена камера догорания. В соответствующих местах верхних и нижних коллекторов экранов топки и стенок конвективной шахты установлены заглушки (перегородки) для обеспечения многоходового движения воды по трубам – вверх, вниз и так далее. Для поддержания скоростей движения в пределах 0,9…1,9 м/с каждый тип котла имеет раз- личное число ходов воды.

    Трубы задней стенки шахты имеют диаметр 60 × 3 мм и установлены с шагом 64 мм, а трубы фестонного экрана – диаметр 60 × 3 мм и установлены с шагом s1 = 256 мм и s2 = 180 мм. Все коллекторы и перепускные трубы котла имеют диаметр 219 × 10 мм. Все верхние коллекторы топки и конвективной шахты имеют воздушники для выпуска воздуха (при заполнении котла водой), а нижние – спускные вентили.

    Газовоздушный тракт. Топливо и воздух подаются в горелку, а в топке образуется факел горения.

    Теплота от топочных газов в топке передается всем экранным трубам (радиационным поверхностям нагрева), а от труб теплота передается воде, циркулирующей по экранам. Из топки, огибая сверху промежуточный (поворотный) газоплотный экран, топочные газы входят в камеру догорания, затем внизу проходят четырехрядный фестон, попадают в конвективную шахту, где теплота передается воде, циркулирующей по пакетам секций (ширм) и, пройдя шахту снизу вверх, топочные газы дымососом удаляются в дымовую трубу и в атмосферу.

    Для удаления загрязнений и отложений с наружной поверхности труб конвективной шахты котлы оборудуются дробеочисткой, использующей чугунную дробь, которая подается в конвективную шахту.

    Движение воды в котле КВ-ГМ-10-150 показано на рис. 8.3.

    Обратная сетевая вода с температурой 70 °С сетевым насосом подается в дальнюю (от фронта) часть нижнего коллектора левого бокового топочного экрана и распределяется по нему до заглушки.

    После ряда подъемно-опускных движений по левому боковому экрану вода из нижнего коллектора по перепускной трубе переходит в фронтовой верхний коллектор переднего (фронтового) экрана.

    Рис. 8.3. Схема циркуляции воды в котле КВ-ГМ-10-150 (КВ-ГМ-11,6-150):

    – нижние коллекторы; – верхние коллекторы

    По левой стороне фронтового и подового экрана вода поступает в нижний, дальний коллектор, откуда после ряда подъемно-опускных движений по правой стороне экрана вновь возвращается в фронтовой верхний коллектор. По перепускной трубе вода поступает в нижний коллектор правого бокового топочного экрана и после ряда подъемно-опускных движений по нему, из нижнего коллектора, по перепускной трубе, переходит в нижний коллектор поворотного (промежуточного) экрана. После ряда подъемно-опускных движений по промежуточному экрану вода из нижнего коллектора, по перепускной трубе переходит в нижний коллектор фестонного экрана, проходит его, поднимаясь и опускаясь, и из верхнего коллектора фестонного экрана поступает в верхний коллектор правой боковой стены конвективной шахты.

    По стоякам и U-образным пакетам секций вода проходит сверху вниз правую боковую стенку шахты и из нижнего коллектора переходит в нижний коллектор задней стены конвективной шахты. После ряда подъемно-опускных движений из верхнего коллектора заднего экрана вода переходит в верхний коллектор левой боковой стены конвективной шахты и, проходя по стоякам и U-образным ширмам сверху вниз, вода из нижнего коллектора с температурой 150°С идет в теплосеть.

    Движение воды в водогрейном газомазутном котле КВ-ГМ-20-150 показано на рис. 8.4.

    Рис. 8.4. Схема циркуляции воды в котле КВ-ГМ-20-150 (КВ-ГМ-23,3-150):

    – нижние коллекторы; – верхние коллекторы

    Рис. 8.5. Схема циркуляции воды в котле КВ-ГМ-30-150 (КВ-ГМ-35-150):

    – нижние коллекторы; – верхние коллекторы

    Движение воды в водогрейном газомазутном котле КВ-ГМ-30-150 показано на рис. 8.5.

    Обмуровка всех котлов облегченная, закрепляемая на трубах. Кирпичная кладка имеется лишь под трубами подового экрана и на фронтовой стене, в которой выкладывается амбразура для горелки.

    8.4. Устройство и работа котла КВ-ГМ-50-150

    Котел водогрейный газомазутный КВ-ГМ-50-150, теплопроизводительностью 50 Гкал/ч (58 МВт), предназначен для нагрева воды систем теплоснабжения до 150 °С и может быть использован как в отопительном основном режиме – 70…150, так и в пиковом – 100…150 °С. Теплогенератор имеет П-образную компоновку, включающую топочный и конвективный блоки. Котел КВ-ГМ-100-150 имеет аналогичную конструкцию и отличаются лишь глубиной топочной и конвективной шахты, а ширина обоих котлов по осям колонн – 5700 мм.

    Котлы рассчитаны на рабочее давление воды 2,5 МПа (25 кгс/см2).

    В табл. 8.30, 8.33 [5] приведены технические характеристики и комплектация котлов КВ-ГМ-50, КВ-ГМ-100, а на рис. 8.6 представлен профиль котла КВ-ГМ-100.

    Топочная камера экранирована трубами диаметром 60 × 3 мм с шагом 64 мм, которые соответственно образуют:

    • передний (фронтовой) экран – вертикальные трубы, приваренные к верхнему, нижнему, а также двум (верхнему и нижнему) промежуточным коллекторам; промежуточные коллекторы по краям соединены между собой перепускными трубами, а между коллекторами установлены горелки;

    • левый боковой экран – вертикально-изогнутые трубы, приваренные к верхнему и нижнему коллекторам, которые экранируют левую боковую стенку и потолок топки до середины, причем верхний коллектор длиннее нижнего на 1/3 и эта удлиненная часть коллектора находится в конвективной шахте, являясь одновременно верхним коллектором бокового экрана конвективной поверхности нагрева;

    • правый боковой экран – выполнен аналогично левому;

    • промежуточный экран – вертикальные (укороченные) трубы, приваренные к верхнему и нижнему коллекторам, которые выполнены в виде газоплотного экрана, разделяющего топку от конвективной шахты; причем промежуточный экран не доходит до потолка топки, оставляя окно для прохода топочных газов из топки в конвективную шахту.

    В соответствующих местах верхнего и нижнего коллекторов боковых топочных экранов установлены заглушки для обеспечения многоходового движения воды по экранным трубам – вниз и вверх.

    Конвективный блок (конвективная шахта) имеет:

    • правую боковую стенку шахты – вертикальные стояки-трубы диметром 83 × 3,5 мм, установленные с шагом 128 мм, приваренные к верхним и промежуточным коллекторам, а в эти стояки вварены три пакета горизонтально расположенных U-образных ширм, выполненных из труб диаметром 28 × 3 мм; кроме того, все стояки сдвинуты относительно друг друга поперек продольной оси экрана на 64 мм, что обеспечивает размещение U-образных пакетов ширм в виде гребенок – в шахматном порядке с ша- гом s1 = 64 и s2 = 40 мм;

    • правый потолочный экран конвективной шахты – изогнутые трубы, которые экранируют правую стенку и потолок до середины конвективной шахты, и приварены соответственно к промежуточному и верхнему коллекторам конвективной шахты;

    • левую боковую стенку и левый потолочный экран конвективной шахты – выполнены аналогично правой стенки;

    • заднюю стенку – вертикальные трубы диаметром 60 × 3 мм, установленные с шагом 64 мм, которые приварены к верхнему и нижнему коллекторам задней стенки шахты.

    Все экранные трубы топки и стояки конвективной шахты приварены непосредственно к коллекторам-камерам диаметром 273 × 11 мм. Все верхние коллекторы топки и конвективной шахты имеют воздушники для выпуска воздуха, а нижние – спускные вентили.

    Котлы не имеют каркаса. Обмуровка котла облегченная, натрубная, толщиной 110 мм, состоит из трех слоев: шамотобетона, совелитовых плит, минераловатных матрацев и магнезиальной обмазки.

    Взрывные предохранительные клапаны установлены на потолке топочной камеры. Нижние коллекторы фронтового, промежуточного и заднего экранов, а также боковых стен конвективной шахты опираются на портал. Опора, расположенная в середине нижнего коллектора промежуточного экрана, является неподвижной, а остальные опоры – скользящие. На фронтовой стенке котлов КВ-ГМ-50 установлены две газомазутные горелки с ротационными форсунками, на котлах КВ-ГМ-100 – три такие же горелки, причем третья горелка размещается во втором ряду сверху – на верхнем ярусе.

    Газовоздушный тракт. Топливо и воздух подаются в горелки, а в топке образуется факел горения.

    Теплота от топочных газов в топке, за счет радиационного и конвективного теплообмена, передается всем экранным трубам (радиационным поверхностям нагрева), и от труб теплота передается воде, циркулирующей по экранам. Из топки, огибая сверху промежуточный газоплотный экран, топочные газы входят в конвективную шахту, где теплота передается воде, циркулирующей по пакетам секций (ширм), и, пройдя шахту сверху вниз, топочные газы дымососом удаляются в дымовую трубу, а затем в атмосферу.

    Для удаления загрязнений, летучей сажи и отложений с наружной поверхности труб конвективной шахты котлы оборудуются очистительной установкой, использующей чугунную дробь, которая подается в конвективную шахту сверху – дробеочистка.

    Принудительная циркуляция воды в котле возможна в основном (70…150 °С) и пиковом (100…150 °С) режимах работы, которые представлены на рис. 6.5.

    Контуры принудительной циркуляции воды. Основной режим движения воды представлен на рис. 8.4, а.

    Рис. 8.6. Схема движения воды в котле КВ-ГМ-50-150:

    а – основной режим; б – пиковый режим;

    1, 2, 3 – фронтовой, боковые и промежуточный экраны топки; 4 – потолочный экран конвективной шахты; 5 – боковые стенки, стояки и пакеты U-образных ширм конвективной шахты; 6 – задняя стенка шахты;

    – верхние; – промежуточные; – нижние коллекторы

    Обратная сетевая вода с температурой 70 °С сетевым насосом подается в нижний коллектор фронтового (переднего) экрана, затем поднимается по трубам до нижнего промежуточного коллектора, по перепускным трубам переходит в верхний промежуточный коллектор, откуда по экранным трубам вода поступает в верхний коллектор фронтового экрана. Двумя потоками по перепускным трубам вода переходит в верхние коллекторы левого и правого боковых экранов, распределяется по коллекторам до заглушек, откуда по ближней (относительно фронта котла) части экранных труб опускается в нижние коллекторы боковых экранов и проходит по ним до заглушек.

    После многоходового движения воды по экранным трубам боковых экранов, из верхних коллекторов боковых экранов, двумя потоками по перепускным трубам, вода переходит в верхние коллекторы промежуточного экрана, проходит через экран сверху вниз. Из нижнего коллектора промежуточного экрана, двумя потоками по перепускным трубам, вода переходит в нижние коллекторы боковых стен конвективной шахты. Далее пройдя стояки и три конвективных U-образных пакета секций (ширм) снизу вверх, вода поступает вначале в промежуточный коллектор, а затем по экранным изогнутым трубам переходит в верхние коллекторы конвективной шахты.

    Из верхних коллекторов конвективной шахты, двумя потоками по перепускным трубам, вода переходит в верхние коллекторы задней стенки шахты, проходит по трубам сверху вниз до нижнего коллектора задней стенки, откуда нагретая до 150 °С вода идет в теплосеть.

    Пиковый режим (рис. 8.4, б). Обратная сетевая вода с температурой 100…105 °С сетевым насосом подается в котел двумя потоками: один в нижний коллектор фронтового топочного экрана, а другой в нижний коллектор задней стенки конвективной шахты. Первый поток проходит фронтовой экран (через промежуточные коллекторы) и из верхнего коллектора по перепускным трубам переходит в верхние коллекторы боковых экранов топки. Выполняя многоходовое движение воды по экранным трубам, вода из верхних коллекторов боковых экранов переходит в промежуточный экран, опускается по трубам вниз и из нижнего коллектора идет в теплосеть с температурой 150 °С.

    Второй поток воды поднимается по трубам задней стенки конвективной шахты и из верхнего коллектора двумя потоками переходит в верхние коллекторы боковых экранов конвективной шахты. Опускаясь, вода проходит боковые экраны конвективной шахты, промежуточные коллекторы, а затем по стоякам вода проходит три пакета конвективных U-образных пакета секций (ширм), и из нижних коллекторов боковых стен шахты вода идет в теплосеть с температурой 150 °С.

    Лекция 7

    9. Хвостовые поверхности нагрева

    9.1. Коррозия поверхностей нагрева

    Внутри труб происходит нагрев воды, парообразование, в связи с этим возможна коррозия от газов, растворенных в воде, а также отложение накипи на стенках труб. С наружной стороны поверхностей нагрева проходит процесс горения топлива, а также износ, загрязнение летучей золой и сажей. Очистку внешних поверхностей нагрева производят паром или сжатым воздухом с помощью обдувочных устройств.

    Обдувочный аппарат представляет собой трубопровод с отверстиями или соплами, который подводится в газоходы котла, вращается вокруг оси, а пар или сжатый воздух, выходя с высокой скоростью, очищает внешние поверхности. Обдувку поверхностей нагрева котлов и экономайзеров необходимо начинать с обдувочного устройства, расположенного ближе к топке, и дальнейшую обдувку проводить по ходу газов и при полностью открытых лопатках направляющего аппарата дымососа, строго следя за тягой. Давление пара в обдувочном аппарате должно быть не менее 0,75 МПа (7,5 кг/см2), а время обдувки не более 2 мин.

    Высокотемпературная коррозия образуется при сжигании топлива, когда в продуктах сгорания имеются продукты (окислы) ванадия, отрицательно действующие на металл экранных труб и пароперегревателя. Для снижения этой коррозии необходимо сжигать топливо (обычно мазут) с меньшим коэффициентом избытка воздуха. Эту коррозию называют ванадиевой и ей подвержены экранные трубы топки.

    Низкотемпературная коррозия образуется в результате конденсации капелек влаги (водяных паров) из продуктов сгорания (дымовых газов), т.е. образуется эффект точки «росы». Обычно эта температура зависит от вида сжигаемого топлива, состава продуктов сгорания и составляет + 65 °С при работе котлов на природном газе или малосернистом мазуте и + 90...110 °С – при работе на сернистом или высокосернистом мазуте. В продуктах сгорания имеются сернистые соединения, которые соединяются с каплями влаги и образуют сернокислые кислоты, отрицательно действующие на металлическую стенку. Поэтому для исключения низкотемпературной коррозии (т.е. конденсации водяных паров из топочных газов на внешней поверхности труб) необходимо, чтобы температура стенки была на 5…10 °С выше температуры точки «росы». Этому виду коррозии подвержены водогрейные котлы, воздухоподогреватели, водяные экономайзеры и др.

    textarchive.ru