- 8 (495) 7487600
- 8 (495) 7487600
- 8 (925) 5552040
- 8 (925) 5552040
- Напишите нам
- Обратный звонок
Интернет магазин оборудования насосной, отопительной и водонагревательной техники №1
Терморегулятор для котла отопления. Как выбрать правильно? Теплореле для котла
инструкция, фото и видео-уроки, цена
Автономный обогрев частного дома позволяет выбирать индивидуальные температурные режимы, что очень комфортно и экономно для жильцов. Чтобы каждый раз не при смене погоды на улице не задавать другой режим в помещении, можно использовать терморегулятор или термореле для отопления, который можно установить и на радиаторы и на котёл.
Обозначения для регулировки температуры
Реклама
Автоматическая регулировка тепла в помещении
Для чего это нужно
Одинокий дом зимой
- Приходилось ли вам когда-либо побывать отдалённом от густонаселённых районов жилом доме, насосной или метеостанции в зимнюю пору, когда единственным средством сообщения являются сани с дизельным двигателем? В таких ситуациях очень часто устраивают отопление своими руками при помощи электричества.
Автономное отопление электричеством с использованием ЭОУ
- Для небольших помещений, например, одна комната дежурного на насосной станции, достаточно масляного радиатора отопления – его хватит для самой суровой зимы, но для большей площади уже потребуется отопительный котёл и система радиаторов. Чтобы сохранить нужную температуру в котле, предлагаем вашему вниманию самодельное регулирующее устройство.
Температурный датчик
Биполярный транзистор
- В этой конструкции не нужны терморезисторы или различные датчики типа ТСМ, здесь вместо них задействован биполярный обыкновенный транзистор. Как и всех полупроводниковых приборов, его работа в большой степени зависит от окружающей среды, точнее, от её температуры. С повышением температуры ток коллектора возрастает, а это негативно сказывается на работе усилительного каскада – рабочая точка смещается вплоть до искажения сигнала и транзистор попросту не реагирует на входной сигнал, то есть, перестает работать.
Кремниевые диоды
- Диоды тоже относятся к полупроводникам, и повышение температуры отрицательно сказывается и на них. При t25⁰C «прозвонка» свободного кремниевого диода покажет 700мВ, а у перманентного – около 300мВ, но если температура повышается, то соответственно будет понижаться прямое напряжение прибора. Так, при повышении температуры на 1⁰C напряжение будет понижаться на 2мВ, то есть, -2мВ/1⁰C.
Схема терморегулятора
- Такая зависимость полупроводниковых приборов позволяет использовать их в качестве температурных датчиков. На таком отрицательном каскадном свойстве с фиксированным базовым током и основана вся схема работы терморегулятора (схема на фото вверху).
- Температурный датчик смонтирован на транзисторе VT1 типа КТ835Б, нагрузка каскада – резистор R1, а режим работы по постоянному току транзистора задают резисторы R2 и R3. Чтобы напряжение на транзисторном эмиттере при комнатной температуре было 6,8В, фиксированное смещение задаётся резистором R3.
Совет. По этой причине на схеме R 3 помечен знаком * и особой точности здесь добиваться не следует, только бы не было больших перепадов. Эти измерения можно провести относительно транзисторного коллектора, соединённым источником питания с общим приводом.
- Транзистор p-n-p КТ835Б подобран специально, его коллектор соединяется с металлической корпусной пластинкой, имеющей отверстие для крепления полупроводника на радиатор. Именно за это отверстие прибор крепится к пластине, к которой ещё прикреплён подводной провод.
- Собранный датчик крепиться к трубе отопления при помощи металлических хомутов, и конструкцию не нужно изолировать какой—либо прокладкой от трубы отопления. Дело в том, что коллектор соединён одним проводом с источником питания – это значительно упрощает весь датчик и делает контакт лучше.
Компаратор
Принципиальная схема компаратора
- Компаратор, смонтированный на операционный усилитель ОР1 типа К140УД608, задаёт температуру. На инвертируемый вход R5 подаётся напряжение с эмиттера VT1, а через R6 – на неинвертируемый вход поступает напряжение с движка R7.
- Такое напряжение определяет температуру для отключения нагрузки. Верхний и нижний диапазон для установки порога на срабатывание компаратора задаются при помощи R8 и R9. Нужный постерезис срабатывания компаратора обеспечивает R4.
Управление нагрузкой
Малогабаритное реле (16A)
- На VT2 и Rel1 сделано устройство управления нагрузкой и индикатор режима работы терморегулятора находится здесь же – красный цвет при нагреве, а зелёный – достижение необходимой температуры. Параллельно обмотке Rel1 включен диод VD1 для защиты VT2 от напряжения, вызванного самоиндукцией на катушке Rel1 при отключении.
Совет. На рисунке выше видно, что допустимая коммутация тока реле 16A, значит, допускает управление нагрузкой до 3кВт. Используйте прибор для мощности 2-2,5кВт, чтобы облегчить нагрузку.
Блок питания
Блок питания для терморегулятора
- Произвольная инструкция позволяет для настоящего терморегулятора в виду его небольшой мощности задействовать в качестве блока питания дешёвый китайский адаптер. Также можно самому собрать выпрямитель на 12В, с током потребления схемы не более 200мА. Для этой цели сгодится трансформатор мощностью до 5Вт и выходом от 15 до 17В.
- Диодный мостик сделан на диодах 1N4007, а стабилизатор на напряжения на интегральном типа 7812. В виду небольшой мощности устанавливать стабилизатор на батарею не требуется.
Наладка терморегулятора
Настольная лампа с абажуром из металла
- Для проверки датчика можно использовать самую обыкновенную настольную лампу с абажуром из металла. Как было отмечено выше, комнатная температура позволяет выдерживать напряжение на эмиттере VT1 около 6,8В, но если повысить её до 90⁰C, то напряжение упадёт до 5,99В. Для замеров можно использовать обычный китайский мультиметр с термопарой типа DT838.
- Компаратор работает следующим образом: если напряжение термодатчика на инвертирующем входе выше напряжения на неинвертирущем, то на выходе оно будет равнозначным с напряжением источника питания – это будет логическая единица. Поэтому VT2 открывается и реле включается, перемещая релейные контакты в режим нагрева.
- Температурный датчик VT1 греется по мере нагревания отопительного контура и с повышением температуры понижается напряжение на эмиттере. В тот момент, когда оно опускается немного ниже напряжения, которое задано на движке R7, получается логический ноль, что приводит к запиранию транзистора и отключению реле.
- В это время напряжение на котёл не поступает и система начинает остывать, что также влечёт за собой остывание датчика VT1. Значит, напряжение на эмиттере повышается и как только оно переходит границу, установленную R7, реле запускается заново. Такой процесс будет повторяться постоянно.
- Как вы понимаете, цена такого устройства невысока, зато позволяет выдерживать нужную температуру при любых погодных условиях. Это очень удобно в тех случаях, когда в помещении нет постоянных жителей, следящих за температурным режимом, или когда люди постоянно сменяют друг друга и к тому же заняты работой.
Заключение
Можно, конечно, установить на радиаторы краны с температурными датчиками, как на самой первой фотографии, но такие устройства не смогут отключать котёл. Но предложенный нами вариант не единственный в своём роде и вы убедитесь в этом, просмотрев видео ролик, приложенный к статье (читайте также статью «Как делается водяное отопление пола: правильная последовательность работ и полезные советы»).
otoplenie-gid.ru
Терморегулятор для котла BeeRT — для ТЭНовых и электродных котлов
■ Два цифровых датчика : обратка и подача. ■ Управления насосом и подключения внешнего программатора. ■ Поддерживает температуру в пределе 5...85 °С.
Терморегулятор предназначен для поддержания заданного теплового режима работы электрических нагревателей (электрических водонагревателей электродного типа, тэновых котлов).Два датчика температуры «подача», «обратка», позволяют снизить расход электрической энергии и получить наиболее благоприятный температурный режим в отапливаемом помещении. В Beert возможно подключение программатора температуры воздуха в помещении и управление работой циркуляционного насоса.
Подробное техническое описание, инструкция по установке, настройке и эксплуатации в техническом паспорте.
Cхема подключения с применением силового реле, магнитного пускателя
Мощность автоматов и силового реле, магнитного пускателя выбирать согласно максимальной мощности котла.
Схема подключения автоматики 3-х фазного котла
• Цифровой датчик температуры D18-3 представляет собой микросхему, которая измеряет температуру, и преобразует измеренные данные в нули и единицы, процессор, расшифровывая получаемый поток данных, переводит в понятную для человека температуру, которая отображается на дисплее терморегулятора.
• При необходимости допускается наращивание (не более 40 м) провода подключения датчика. Не допустимо использование двух жил многожильного кабеля, используемого для питания нагревателя.
• Термозащита - защита от внутреннего перегрева : если температура внутри корпуса превышает 80 °С, происходит аварийное отключение нагрузки, пока температура внутри корпуса не снизится до 60 °С.
Технические характеристики
Гарантия 36 месяцев
Параметр | Значение |
Напряжение питания | 220 В ±10 %, 50 Гц AC |
Пределы регулируемых (контролируемых) температур | 5...85 °С |
Температурный гистерезис ( разница между температурами установки и включения нагрузки. ) | 1 - 30 °С |
Максимальный ток нагрузки | 2 х 16 А |
Максимальная мощность нагрузки | 2 х 3000 ВА |
Датчик температуры | цифровой DS18B20-2шт. |
Длина провода датчика в термоусадке | 4 м |
Количество коммутаций под нагрузкой, не менее | 50 000 циклов |
Количество коммутаций без нагрузки, не менее | 100 000 циклов |
Габариты | 80 × 90 × 54 мм |
Степень защиты | IP20 |
Масса в полной комплектации | 0,37 кг |
www.3nnov.ru
Терморегулятор для котла отопления. Как выбрать правильно?
Чтобы иметь возможность управлять потреблением энергоресурсов отопительного оборудования, его оснащают специальным прибором, который называется, терморегулятор для котла отопления.
Регулировать температуру теплоносителя можно двумя способами:
- в ручном режиме
- с помощью автоматики
В наше время большинство людей отказывается от ручного управления, выбирая второй метод. Для его использования необходимо иметь устройство, которое постоянно замеряет температуру и в зависимости от ее величины отключает или включает обогрев.
С этой целью используются приборы, которые постоянно осуществляют следующие функции:
- контроль температуры рабочей среды
- передача и получение сигналов по каналам связи
- обработка информации и формирование команды на исполнительную силовую часть
- переключения электросхемы
- обратная связь
Поблочный принцип работы системы регулирования показан на рисунке.
Алгоритм регулирования температуры
Конструктивно такие приборы могут быть выполнены:
- механическими автономными устройствами прямого воздействия
- электронными автоматическими установками
Механический терморегулятор для котла отопления
Они работают по принципу изменения геометрических размеров биметаллической пластины, рабочей жидкости, газа либо парафина при нагреве и охлаждении.
Механический терморегулятор для котла отопления
Составные пластины из двух металлов с разными коэффициентами линейных температурных расширений применяются в маломощных устройствах на тепловых реле различных конструкций. При нагреве биметалл изгибается и размыкает контакты, отключая электропитание. После остывания пластин схема возвращается в рабочее состояние.
В конструкцию терморегулятора прямого действия входят:
- корпус
- золотник с клапаном и штоком
- сильфон с рабочей тепловой средой
Конструкция механического терморегулятора
Все устройство монтируется в трубопровод подачи горячей воды, воспринимает ее температуру. При нагреве рабочая среда расширяется и воздействует на клапан, который перемещается, перекрывая проходное сечение магистрали. При охлаждении теплоносителя клапан возвращается на место.
Терморегуляторы прямого действия производят замер температуры воды, циркулирующей по системе обогрева для ее регулирования. Этот способ только косвенно поддерживает тепло в помещениях, не учитывает его истинное значение.
Электронный терморегулятор для котла отопления
Более качественно поддерживать микроклимат в помещениях помогают датчики, контролирующие температуру воздуха в комнате. Их принято называть термостатами и добавлять слово «воздушные».
Таким образом, получается, что терморегулятор просто поддерживает температуру теплоносителя в определенном диапазоне, а термостат работает точнее, стабилизируя микроклимат помещения.
Если воздух в комнате будет дополнительно обогреваться какими-либо источниками, например, солнечными лучами через стекла окон или от тепла работающих электроприборов, то терморегулятор не скоро почувствует эти факторы, а термостат — быстро среагирует, экономя энергию и ресурс оборудования.
Электронный терморегулятор для котла отопления
Термостаты работают в составе электронных автоматических устройств, имеют определенный диапазон стабилизации температуры и по своей конструкции могут передавать информацию на блок логики и управления:
- по проводам
- с помощью радиоволн
Все они нуждаются в электропитании. Первые снабжаются электроэнергией с помощью блоков питания схемы, а вторые работают от встроенных батареек или аккумуляторов. Для экономии их энергии часто используется прерывистый режим, когда воздушный термостат в течение долей секунды осуществляет замеры и передает их логическому блоку, а затем выключается на несколько минут. Следующие замеры повторяются по аналогичному циклу.
Принцип управления электрокотлом:
Принцип управления электрокотлом с воздушным термостатом
Беспроводные термостаты обычно работают на одном из двух диапазоне частот, официально предназначенных для бытовых приборов:
- 868 МГц (класс элита)
- 433 МГц (экономкласс)
На качество поддерживаемой температуры помещения влияет место установки термостата. К примеру, необходимо учитывать, что:
- на кухне часто работают дополнительные приборы, выделяющие тепло, которое будет учитываться термостатом
- воздушные массы при нагреве поднимается к потолку, а около пола температура снижается
- при открытии форточек начинается теплообмен с улицей
- изоляция термостата от естественной циркуляции воздуха нарушает работу автоматики
Логические блоки, снабженные микропроцессорными схемами управления, в автоматическом режиме работы обладают разными функциями:
- отдельные модели позволяют задавать температурный режим в комнатах в зависимости от времени суток (в рабочее время создается комфорт, а ночью — экономия) и дня недели
- наличие режима «температура предохранения от замерзания»
- установка защиты от пропадания связи между приемником и передатчиком, когда управление котлом переходит на режим «памяти циклов коммутации» за последние сутки
- функция учета работы оборудования отопления, как на отдельных электрических счетчиках
- использование беспотенциальных исполнительных контактов
- увеличенная дальность связи между передатчиком и приемником
- защита радиоканалов от помех
- сенсорное управление
Система управления батареями и тёплым полом
Производством терморегуляторов и воздушных термостатов для электрических котлов занимается много производителей с мировым именем. Популярностью пользуются приборы, предоставленные компаниями:
- BOSCH
- Ariston
- SALUS Controls Ltd
- Viessmann
- Vaillant
При выборе схемы регулирования температуры следует подбирать термодатчик под конкретные условия его работы с учетом нужд потребителя.
Смотрите также по теме:
Терморегулятор для теплого пола, как устроен и работает?
Термостат, что это? Техническое исполнение и принцип работы.
Будем рады, если подпишетесь на наш Блог!
powercoup.by
Мощная нагрузка с W1209 электронным терморегулятором
Мощная нагрузка с W1209 электронным терморегулятором и твердотельным реле W1209 (103р) https://ru.aliexpress.com/item/1PCS-W1209-DC-12V...
Дешёвая автоматика для циркуляционного насоса из Китая.
Дешёвая автоматика для циркуляционного насоса из Китая. Покупал регулятор температуры тут http://ali.pub/171kba...
Термостат. Как подключить к насосу?
Термостат. Термостат насоса. В этом видео подробно рассмотрим, как подключить термостат. Схемы подключения....
Термостат Cewal натрубний, для циркуляційного насоса.
Термостат Cewal натрубний, для циркуляційного насоса. Обзор, принцип роботи, правильність підключення.
Автоматическое Включение Циркуляционного Насоса
ссылка на блок питания ...
термостат на циркуляционный насос !!!
подключить термостат на циркуляционный насос.
Cхема подключения теплореле W1209. для насоса котла отопления дома
Этот ролик обработан в Видеоредакторе YouTube (http://www.youtube.com/editor)
Cхема подключения теплореле W1209. для насоса котла отопления дома.часть2
Этот ролик обработан в Видеоредакторе YouTube (http://www.youtube.com/editor)
food-health-vika.com
Термореле для дровяной печи W1209
В этом видео автоматизирую включение циркуляционного насоса котла дровяной печи. Полноценный, легко настр...
Термостат Cewal натрубний, для циркуляційного насоса.
Термостат Cewal натрубний, для циркуляційного насоса. Обзор, принцип роботи, правильність підключення.
термостат на циркуляционный насос !!!
подключить термостат на циркуляционный насос.
комнатный термостат, котла отопления
отопление включается по температуре теплоносителя отопление дома можно включать другим комнатным термост...
Автоматическое Включение Циркуляционного Насоса
ссылка на блок питания ...
Как подключить термостат на циркуляционный насос?
www.termostar.md, Chisinau, str.Manole 5, tel. (022) 83-53-53 В данном видео, я расскажу как подключить контактный термостат для управ...
Cхема подключения теплореле W1209. для насоса котла отопления дома
Этот ролик обработан в Видеоредакторе YouTube (http://www.youtube.com/editor)
Cхема подключения теплореле W1209. для насоса котла отопления дома.часть2
Этот ролик обработан в Видеоредакторе YouTube (http://www.youtube.com/editor)
food-health-vika.com
Тепловая защита электродвигателя. Электротепловое реле.
Здравствуйте уважаемые читатели сайта sesaga.ru. В предыдущей статье мы с Вами рассмотрели принципиальные схемы включения магнитного пускателя, обеспечивающие реверс вращения электродвигателя.
Продолжаем знакомиться с магнитным пускателем и сегодня рассмотрим типовые схемы подключения электротеплового реле типа РТИ, которое предназначено для защиты от перегрева обмоток электродвигателя при токовых перегрузках.
1. Устройство и работа электротеплового реле.
Электротепловое реле работает в комплекте с магнитным пускателем. Своими медными штыревыми контактами реле подключается к выходным силовым контактам пускателя. Электродвигатель, соответственно, подключают к выходным контактам электротеплового реле.
Внутри теплового реле находятся три биметаллические пластины, каждая из которых сварена из двух металлов, имеющих различный коэффициент теплового расширения. Пластины через общее «коромысло» взаимодействуют с механизмом подвижной системы, которая связана с дополнительными контактами, участвующими в схеме защиты электродвигателя:
1. Нормально-замкнутый NC (95 – 96) используют в схемах управления пускателем;2. Нормально-разомкнутый NO (97 – 98) применяют в схемах сигнализации.
Принцип действия теплового реле основан на деформации биметаллической пластины при ее нагреве проходящим током.
Под действием протекающего тока биметаллическая пластина нагревается и прогибается в сторону металла, имеющего меньший коэффициент теплового расширения. Чем больший ток будет протекать через пластину, тем сильнее она будет греться и прогибаться, тем быстрее сработает защита и отключит нагрузку.
Допустим, что электродвигатель подключен через тепловое реле и работает в нормальном режиме. В первый момент времени работы электродвигателя через пластины течет номинальный ток нагрузки и они нагреваются до рабочей температуры, которая не вызывает их изгиб.
По какой-то причине ток нагрузки электродвигателя стал увеличиваться и через пластины потек ток выше номинального. Пластины начнут сильнее греться и прогибаться, что приведет в движение подвижную систему и она, воздействуя на дополнительные контакты реле (95 – 96), обесточит магнитный пускатель. По мере остывания пластины вернутся в исходное положение и контакты реле (95 – 96) замкнутся. Магнитный пускатель опять будет готов к запуску электродвигателя.
В зависимости от величины протекающего тока в реле предусмотрена уставка срабатывания по току, влияющая на силу изгиба пластины и регулирующаяся поворотным регулятором, расположенным на панели управления реле.
Помимо поворотного регулятора на панели управления расположена кнопка «TEST», предназначенная для имитации срабатывания защиты реле и проверки его работоспособности до включения в схему.
«Индикатор» информирует о текущем состоянии реле.
Кнопкой «STOP» обесточивается магнитный пускатель, но как в случае с кнопкой «TEST», контакты (97 – 98) не замыкаются, а остаются в разомкнутом состоянии. И когда Вы будете задействовать эти контакты в схеме сигнализации, то учитывайте этот момент.
Электротепловое реле может работать в ручном или автоматическом режиме (по умолчанию стоит автоматический режим).
Для перевода в ручной режим необходимо повернуть поворотную кнопку «RESET» против часовой стрелки, при этом кнопка слегка приподнимается.
Предположим, что сработало реле и своими контактами обесточило пускатель.При работе в автоматическом режиме после остывания биметаллических пластин контакты (95 — 96) и (97 — 98) автоматически перейдут в исходное положение, тогда как в ручном режиме перевод контактов в исходное положение осуществляется нажатием кнопки «RESET».
Кроме защиты эл. двигателя от перегрузок по току, реле обеспечивает защиту и в случае обрыва питающей фазы. Например. При обрыве одной из фаз, электродвигатель, работая на оставшихся двух фазах, станет потреблять больше тока, отчего биметаллические пластины нагреются и реле сработает.
Однако электротепловое реле не способно защитить двигатель от токов короткого замыкания и само нуждается в защите от подобных токов. Поэтому при установке тепловых реле необходимо устанавливать в цепь питания электродвигателя автоматические выключатели, защищающие их от токов короткого замыкания.
При выборе реле обращают внимание на номинальный ток нагрузки электродвигателя, который будет защищать реле. В инструкции по эксплуатации, идущей в коробке, есть таблица, по которой выбирается тепловое реле для конкретной нагрузки:
Например.Реле РТИ-1302 имеет предел регулировки тока уставки от 0,16 до 0,25 Ампер. Значит, нагрузку для реле следует выбирать с номинальным током около 0,2 А или 200 mA.
2. Принципиальные схемы включения электротеплового реле.
В схеме с тепловым реле используют нормально-замкнутый контакт реле КК1.1 в цепи управления пускателем, и три силовых контакта КК1, через которые подается питание на электродвигатель.
При включении автоматического выключателя QF1 фаза «А», питающая цепи управления, через кнопку SB1 «Стоп» поступает на контакт №3 кнопки SB2 «Пуск», вспомогательный контакт 13НО пускателя КМ1, и остается дежурить на этих контактах. Схема готова к работе.
При нажатии на кнопку SB2 фаза через нормально-замкнутый контакт КК1.1 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его все нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.
При замыкании контакта КМ1.1 пускатель встает на самоподхват. При замыкании силовых контактов КМ1 фазы «А», «В», «С» через контакты теплового реле КК1 поступают на обмотки электродвигателя и двигатель начинает вращение.
При увеличении тока нагрузки через силовые контакты термореле КК1, реле сработает, контакт КК1.1 разомкнется и пускатель КМ1 обесточится.
Если возникнет необходимость в простой остановке двигателя, то достаточно будет нажать на кнопку «Стоп». Контакты кнопки разорвутся, фаза прервется и пускатель обесточится.
На фотографиях ниже показана часть монтажной схемы цепей управления:
Следующая принципиальная схема аналогична первой и отличается лишь тем, что нормально-замкнутый контакт термореле (95 – 96) разрывает ноль пускателя. Именно эта схема получила наибольшее распространение из-за удобства и экономичности монтажа: ноль сразу заводят на контакт термореле, а со второго контакта реле бросают перемычку на катушку пускателя.
При срабатывании термореле контакт КК1.1 размыкается, «ноль» разрывается и пускатель обесточивается.
И в заключении рассмотрим подключение электротеплового реле в реверсивной схеме управления пускателем.
От типовой схемы она, как и схема с одним пускателем, отличается лишь наличием нормально-замкнутого контакта реле КК1.1 в цепи управления, и тремя силовыми контактами КК1, через которые запитывается электродвигатель.
При срабатывании защиты контакты КК1.1 разрываются и отключают «ноль». Работающий пускатель обесточивается и двигатель останавливается. При возникновении необходимости в простой остановке двигателя достаточно нажать на кнопку «Стоп».
Вот и подошел к логическому завершению рассказ о магнитном пускателе.Понятно, что только одних теоретических знаний мало. Но если Вы будете практиковаться, то сможете собрать любую схему с применением магнитного пускателя.
И уже по сложившейся традиции небольшой видеоролик о применении электротеплового реле.
Удачи!
sesaga.ru
Терморегуляторы для отопления: виды и их конструкции
Механический терморегулятор отопления
Чтобы как-то регулировать температуру теплоносителя внутри отопительной системы, были изобретены специальные приборы — терморегуляторы отопления. Сегодня производители предлагают три основных вида таких приборов, которые отличаются друг от друга внутренним сигналом. Именно от него они и работают. Эти сигналы могут исходить:
- От теплоносителя;
- От воздуха внутри помещения;
- От воздуха снаружи дома.
Первый вид термостатов относится к категории «устаревших». Их сегодня применяют редко как неэффективную модель, реагирующую только на температурные показания теплоносителя. А это не всегда эффективно и оправдано.
Здесь обычно используется погружной или накладной датчик, от которого и поступают сигналы. Такой способ регулирования температурного режима малоэкономичен. И все же такие термостаты еще присутствуют на рынке, а некоторые обыватели предпочитают их другим моделям, благодаря их невысокой цене.
Второй вид более прогрессивен, ведь он реагирует на температуру воздуха, а не на уровень нагревания самой системы отопления. Такой прибор устанавливается где-нибудь внутри помещения. Он связан с системой включения и выключения отопительного котла с помощью тонкого кабеля, который и передает сигнал. Это система контроля более эффективна и экономична.
Третий вариант считается самым современным. Датчик такого терморегулятора установлен на улице и сразу реагирует на изменения погодных условий. Это очень важный момент, который предопределяет возможность коррекции температурного режима в доме.
Если погода начинает меняться, это сразу же позволяет принять меры до того, как снизится температура внутри дома. Такая система хорошо экономит топливо, а это уже экономическая сторона вопроса, во многом определяющая выбор. Кстати, все три вида могут быть использованы в комплексе.
Существует еще одно разделение терморегуляторов — по способу получения сигнала и по конструктивным особенностям. Рассмотрим все виды.
Терморегуляторы прямого действия
Это самый простой прибор автоматического управления для бытовых отопительных систем. Его устанавливают в трубопровод отопления. Здесь он автоматически перекрывает клапаном сечение трубы, уменьшая или увеличивая его и давая тем самым возможность большему или меньшему объему пройти в радиаторы.
Конструкция его достаточно проста. В нее входят: клапан, золотник, шток и сильфон, куда закачивается материал, способный быстро расширяться или сужаться под действием температуры. Это может быть парафин, жидкий компонент или газообразный.
Установленный на трубопровод с горячей водой, терморегулятор сам тоже нагревается, и под действием температуры происходит расширение наполнителя.
Терморегулятор прямого действия
Парафин расширяет сильфон, который давит на шток. На штоке закреплен клапан, перекрывающий трубу, через которую теплоноситель попадает в радиатор. То есть, под действием законов физики происходит контроль над мощностью отопления. Здесь нет посторонней энергии, все происходит самостоятельно. Вот почему данный вид терморегуляторов так и называется. Кстати, обратный процесс происходит по тем же законам, только наоборот.
Такие терморегуляторы устанавливаются около приборов отопления. Ими же можно контролировать температуру воды в бойлерах. Тогда придется дополнительно использовать выносные или погружные датчики, которые монтируются прямо в воду.
Терморегуляторы с электрическим управлением
Обычно данный вид используется при лучевой системе отопления дома. Это когда с одного коллектора разводка производится во все помещения здания. Удобство данного прибора заключается в том, что его термостат с датчиком установлен в помещении, где замеряется температура воздуха. А сам терморегулятор находится около коллектора.
Цифровой терморегулятор
Как только датчик отреагирует на изменения температуры, он передаст прибору сигнал. По нему будет произведено или перекрытие трубы подачи теплоносителя, или ее открытие. Сигнал подается от сдвоенной диафрагмы, которая под действием повышенных температур расширяется, а ее пластинки соединяются. И наоборот.
Это очень эффективный прибор. К тому же, производители постоянно усовершенствуют его, придавая дополнительные опции. К примеру, режим «комфортный-экономный» или «день-ночь». Многие модели оснащены таймерами.
Электрические терморегуляторы
Данный вид нашел свое применение практически во всех типах отопительных сетей. Но используют его не для перекрытия подачи теплоносителя прямо в трубах, а как регулятор. Он воздействует, к примеру, на горелку котла или на циркуляционный насос, включая или выключая его. Это очень эффективный прибор, который не врезается в саму систему отопления, а подключается к оборудованию — как электрический элемент, способный разъединить электрическую схему.
Выводы
Электротерморегулятор
Итак, необходимо подытожить все сказанное и определить, нужны ли термостаты или нет. В том, что они необходимы, сомнений нет. Именно с помощью данных приборов можно сэкономить на отоплении, которое в зимнее время съедает большую часть семейного бюджета.
На рынке сегодня можно найти аналоги, которые находятся в оптимальном соотношении цена-качество. Устанавливаются термостаты на несколько лет. Некоторые модели служат верой и правдой десятилетиями. То есть, вложения окупаются быстро.
Здесь важно правильно подойти к выбору того или иного вида. Но то, что терморегуляторы играют важную роль в жизнеобеспечении дома, никто уже не сомневается. Приплюсуем сюда комфортное состояние внутри помещений, которое во многом зависит от температурного режима.
И последнее. С каждым годом модели приборов усовершенствуются. Но не стоит гоняться за новинками, периодически меняя их. Старые модели соответствуют всем нормам и требованиям современности. Поверьте — они долго прослужат вам, не создавая лишних проблем.
Похожие записиКомментарии и отзывы к материалу
У вас должен быть включен JavaScript для отображения комментариев.gidotopleniya.ru