Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Химводоподготовка для паровых котлов. Водоподготовка котлов


Водоподготовка для паровых и водогрейных котлов

Если сравнивать различные варианты теплоносителей, то наверняка битву выиграет самый простой и доступный. И им будет именно вода. Потому ее так массированно в системах обогрева и используют. Без качественной воды, без лишних примесей ни одна котельная долго не просуществует, даже если поверхности котлов и труб будут своевременно очищаться. Так была создана водоподготовка для котлов, которая помогает поддерживать воду в надлежащем качестве.

 

Химическая водоподготовка котловой воды

При всей затратности и хлопотности котельные до сих пор используют химическую очистку воды. Такая технология получения нужной для работы системы воды означает не только хлорирование, но и использование других, более современных методов получения воды надлежащего вида. Любая водоподготовка котловой воды, это:

  • Продление ее срока службы;
  • Существенное понижение сопутствующих, обслуживающих затрат;
  • Защита от негативного воздействия накипного осадка.

Всего есть три больших группы примесей, которые оказывают самое значительное, вредное влияние на внутренние поверхности парового и водогрейного котла, а также всей котловой воды:

Группа

Виды

Вредные включения

Нерастворимые

Образующие осадок, с негативными последствиями

Примеси с коррозионной активностью

Любая из выше приведенных примесей не пройдет бесследно для теплогрейного оборудования. И КПД системы упадет, и поломки возможны, причем такие, что восстановить систему будет невозможно. Поэтому важно вовремя устранить засорения. Отсутствие правильной или полной системы водоподготовки в котельной может привести к различным поломкам. Насос может легко выйти из строя или забиться, трубопроводы могут забиться и протереться, от такого явления как «кавитация». Сечение труб резко сокращается от наростов накипи, от данного негативного явления ломаются и теплообменники, и арматура, и самое важное перегорают нагревательные элементы.

В качестве системы водоподготовки для паровых и водогрейных котлов в большинстве случаев используют именно химическую водоподготовку, забывая, что главной задачей стоит не конкретно умягчение воды, а защита самих котлов от зарастания накипью и известью. Для этого существуют не химические (электромагнитные) фильтры умягчители воды, например, АкваЩит или аналоги.

Системы водоподготовки для паровых и водогрейных котлов

Лучше всего о вреде налета скажут суровые цифры статистики. Достаточно всего одного миллиметра накипи, чтобы потери нагрева составили 5 процентов. Если брать стандартную водопроводную воду, где жесткость семь миллиграмм, это норма, то котел, который производит одну тонну горячей воды в час, за месяц соберет двести килограмм налета! И это гарантированная поломка. За какой то месяц работы при нормативной извести!

К негативу, который несет известковость, можно добавить - она является прекрасным стимулирующим для развития любого вида коррозионных вспышек. Электрохимическая коррозия – это прямо следствие неполного устранения из воды, что солей железа или бактериального железа, а также марганцевых солей.

Прежде чем разбираться, какие реагентные примеси работнику нужно применить для химической водоподготовки котловой воды, нужно определиться с каким котлом придется работать. Требования к воде и к химикатам водогрейного котла одни, а вот у парового другие, намного выше.

Изучение водоподготовки нужно начинать с особенностей котельной системы. Итак, водогрейная котельная. Уже из названия понятно, что главная движущая сила здесь кипяток. И паровой котел занимается именно тем, что производит горячую воду. Не пар, а именно воду. Контур подачи воды в данной системе закрытый. Воду в такую систему запускают один раз. Компенсация недостающей котловой воды происходит всего лишь в двух случаях. Должны быть несанкционированные потери или же перед началом отопительного сезона.

Что включает в себя система водоподготовки для паровых и водогрейных котлов?

Что включает в себя система водоподготовки для котлов? Чаще всего это два вида фильтрующего оборудования – механический этап для устранения твердых осадков и умягчающий. Механические системы чаще всего сетчастые, могут укомплектовываться встроенным регулятором давления. В случае, если котловую воду добывают из под земли, то лучше установить очиститель с полипропиленовым вкладышем. Пользуются популярностью и дисковые фильтры Azub, Arkal или аналоги. Они хорошо устраняют механику и очень мелкую. Причем срок замены дисков намного дольше, чем у обычного фильтра с засыпкой или сетками. Чтобы в водогрейном котле не было коррозии, очень важно все твердые включения убрать. Причем это относится даже к пыли и растворенной глине. Все, что есть в воде, потом может негативно сказаться на поверхностях сложного и дорогостоящего оборудования.

И после механики наступает черед привести воду к надлежащей мягкости. Загрузка у химических умягчителей может быть разной. Самый популярная система водоподготовки для загородного дома – смоляная. В случае, если в котловой воде есть некоторое превышение солей железа, то подойдет для очистки и комплексная засыпка, которая поможет справиться и с солями железа, и побороть известковость. Управление такими системами может осуществляться вручную, а может быть выполнено в виде клапана автоматического управления. Восстанавливают такие приборы с помощью таблетированной соли. Если нужно экономить пространство котельной, или в квартире то устанавливают котельные-кабинетники. Они очень небольшого размера, а включают в себя сразу несколько чистящих этапов.

Умягчающее устройство в быту, защищает все приборы, которые занимаются нагревом воды. Мягкая вода – отличный способ предотвратить образование накипного налета на любых поверхностях. Но есть еще и другой вид паровых котлов. И там система водоподготовки сложнее.

 

Пар и все, что с ним связано

Ну, что может быть сложного в пару? Нагревай себе воду, получай испарения, и подавай этот пар дальше в систему. Но на самом деле любые примеси в пару легко могут испортить всю систему. Потому ко всем этапам свойственным водоподготовке для котельных паровых котлов с замкнутым контуром добавляется еще и дегазация. Правда, производство пара не подразумевает повторного использования воды.

Но еще несколько слов о котельных водогрейных. Специальные химикаты используются в таких системах, в случае, если мощность котла составляет 500 и выше киловатт. Убрать лишний кислород поможет бисульфит натрия, поправить уровень РН поможет гидроксид натрия. Но чаще всего используют микс реагентов, для того, чтобы защитить весь контур, где происходит доведение воды до состояния кипятка.

Что же так усложняет систему водоочистки для загородного дома к нормальной работе котельных? Здесь в работу начинает вмешиваться контролирующий орган Энерготехнадзор. И каждая котельная, и ее главный инженер бесприкословно должны выполнять требования, как самого контролирующего органа, так и требования производителей котла.

Главная особенность все-таки состоит в огромнейшей моще воды, которую приходится обрабатывать и чистить ежедневно. И совершать все манипуляции с водой следует непрерывно и неотрывно от основного производства.

Водоподготовка для паровых котлов гарантирует, что котел прослужит ровно столько, сколько заявил производитель и, при этом, качество его работы будет всегда примерно одинаковым и высоким. Она действительно помогает значительно экономить на промывках и капитальных чистках. Причем, приборы, которые подготавливают пар, могут быть реагентными и требующими восстановления, экономия от их применения все равно будет разительной.

Отложения накипи в паровом котле

Есть такое понятие, как межремонтный период работы котельного оборудования. Он будет увеличиваться, если изначально использовать хорошую воду. То есть поломка если и произойдет, то точно не по причине жесткости воды. Паровая котельная – это то место, где используют все новинки среди фильтров умягчения и тонкой очистки. Любая соринка в пару, это потенциальный объект, который может прилипнуть к поверхности трубы или водогрейного котла в процессе подачи и организовать очаг развития коррозионных гниений.

Другие примеси являются органическими, то есть растворенными в воде. В том числе к ним относятся и соли известковости. В воде нельзя увидеть их невооруженным взглядом. Их не почувствуешь на вкус, но вот оценить их негативную работу можно уже спустя месяц после использования такой вроде бы нормальной воды.

Соли растворенные в воде образуют гидрокарбонатную жесткость. Но стоит довести воду до кипячения, как соли начнут выпадать в осадок и покрывать поверхности плотным и вредным налетом. Вот это уже просто карбонатная известковость. Вот ее убрать с поверхностей труднее всего. Осадок плохо отдирается, плохо растворяется. Убрать с поверхностей такой осадок, не повредив саму поверхность очень неудобно и сложно.

Из накипинов в состоянии образоваться зерна. То есть накипь осела на поверхностях и потом уголки размыло, появились зерна-осколки, которые разносит по всей системе. И чем выше температура нагрева, тем активнее оседает осадок и тем больше таких осколков ко всему прочему образуется в системе.

При работе с паром, есть такое понятие, как конденсат, он будет снова превращаться в воду и стекать по стенкам. Сам же пар является двигателем, его же используют и для работы паровых турбин. Но чтобы лопасти раньше времени не стерлись, опять же пар должен быть абсолютно стерильным, никаких непонятных осадков и растворенных примесей.

Какие еще системы и фильтры использовать?

Лучше всего в котельных по отзывам работников зарекомендовал себя электромагнитный фильтр-умягчитель. Его компактные размеры и легкость, позволяют монтировать его на любую трубу, с любым расположением. Это позволяет даже спрятать сам очиститель подальше от человеческих глаз. Поле работает с любым материалом, будь то пластик, метало пластик или просто металл.

Созданное в трубе, где протекает вода сильное поле прибора заставляет соли менять свой вид. Раньше у них была большая площадь для прилипания, после прохождения трансформации силовыми линиями, площадь значительно уменьшается. Теперь это игла, а в такой форме пристать к поверхности парового котла не выйдет. Потому иглы и трутся о поверхности стремясь прилипнуть. Но в результате гарантированно помогают избавиться от старого осадка в любом месте системы водоподготовки для котлов, не прибегая к остановкам и к отключениям. Правда, поскольку в системе нет фильтрации, для питьевого использования вода не подходит в систему следует включать другие фильтры, хоть тонкой очистки, хоть смоляного типа.

ruvoda.com

Водоподготовка котла. Водоподготовка для котлов. Водоподготовка для паровых и водогрейных котлов

АкваЩит - Водоподготовка

 

 

Система тепло- и водоснабжения чрезвычайно важна для любого города. Если она работает некачественно, то страдает и производство, и люди. Теплоэнергетика в своей работе использует очень много воды. Точно как и система водоснабжения. Вопросы умягчения воды в данной сфере не теряют своей актуальности до сих пор.

Водоподготовка котла

К проблемам водоподготовки котла относят разработку правильной системы очистки воды, возможности ее установки и проблемы финансирования. В котельных не все так просто, как кажется. Во-первых назначение котельных может быть разным. Одни работают исключительно на отопление, другие греют воду для горячего водоснабжения, третьи отвечают за производство пара для паровых турбин. В каждом варианте есть свои особенности системы водоподготовки котла.

Нельзя не отметить и тот факт, что система отопления должна проходить дополнительные этапы подготовок, т.к. она не работает круглый год. Там есть этап подготовки системы к отопительному сезону, и есть этап консервации системы на весенне-летний период. Все эти особенности сказываются на составе водоподготовки котла.

Если в котельных использовать некачественную воду, в нашем случае жесткую воду, можно просто в результате остаться без оборудования и все из за повышенной жесткости воды и накипи, которую она образует. Добавьте сюда его кислород и угольную кислоту, которые образуются в котловой воде. Эти явления стимулируют развитие коррозии в котельной.

Если вы используете реагентную очистку от накипи, то тут тоже можно сократить срок использования котла. Все прекрасно знают, что сейчас у нас подделывают, что угодно. Найти качественные реагенты – это проблема. И очень часто для очистки от накипи мы можем использовать некачественные химикаты. Они также стимулируют образования разнообразных отложений, от которых также придется избавляться. Если на все эти явления не обращать внимания, то в котле начнут происходить необратимые процессы. Из-за разного рода отложений, КПД котла начнет падать, в дальнейшем, чем больше будет слой накипи на нагревательных поверхностях котла, тем выше будет перегрев этой самой поверхности.

Накипь очень плохо проводит тепло, да и не поглощает его. В результате в котельной резко начнет расти расход топлива, потом качество нагрева воды будет падать. Если в системе нет электрического теплообменника, то в один момент котел может взорваться или треснуть, и все из-за плохой теплопроводимости накипи. Ведь поверхность будет постоянно перегреваться, и свойства свои металл когда-нибудь начнет терять. Прочность станет падать и металл от перегрузок треснет. Тоже самое происходит и в трубах. Образование свищей или отдулин вызвано теми же процессами.

Вторая проблема, связанная с водоподготовкой котла связана с некачественно собранным набором умягчителей воды для паровых и водогрейных котлов, а также  фильтров. Если вы где то установите маломощный фильтр для воды, или не продумаете правильно последовательность этапов очистки воды, то возможны такие явления, как вспенивание и унос воды. Рем простимулируют большие потери воды. Она сегодня стоит очень дорого, чтобы позволять такой неконтролируемый ее расход.

Если это паровой котел, то плохое качество пара при неправильной водоподготовке котла тоже может вызвать поломку оборудования. Паропровода, конденсаторы из-за некачественного пара также быстро ломаются.

Все эти причины и привели к тому, что даже водоподготовка котла была регламентирована. В сводах, ГОСТах, правилах четко прописано, что и как нужно устанавливать, каким требованиям должно отвечать оборудование, чтобы оно могло работать в паровых котельных. Нельзя водоподготовку котла доверять непрофессионалам. К качеству подпиточной воды для котлов предьявляются очень высокие требования.

 

Водоподготовка для котлов

 

В общем, водоподготовка для котлов может представлять собой применение нескольких магнитных или электромагнитных умягчителей воды АкваЩит, здесь системы тонкой очистки воды не используют.

Однако, если забор воды производят из первичного источника, то одного электромагнитного умягчителя воды АкваЩит будет недостаточно. В этом случае будут использовать механический фильтр для воды, возможно применение обезжелезивателя и обеззараживателя. Состав фильтров для воды будет зависеть от того, какие включения есть в исходной жесткой воде. О работе непосредственно электромагнитного умягчителя воды АкваЩит расскажем чуть ниже. А сейчас рассмотрим особенности водоподготовки для котлов. Здесь главное устранить из воды повышенную жесткость и убрать каррозионно активные газы, которые будут значительно снижать качество пара.

Водоподготовка для котловНачинается водоподготовка для котлов парового типа с механической очистки воды. Для этого могут использовать обычный механический фильтр для воды или же гравийный фильтр. В последнем основу составляет гравий, разной степени дробления. В начале это куски более крупного размера, ближе к концу гравий имеет совсем мелкий помол, который помогает удержать примеси, размером с песчинку.

Данный этап помогает устранить из воды любые твердые неорганические примеси. Промывать его можно обычной водой, это один из самых долговечных фильтров.

После этапа механической чистки настает время бытового фильтра для умягчения воды или обессоливания. Для этого используют водоподготовку для котлов. Здесь же могут устанавливать приборы ультрафильтрации или обратного осмоса. Приборы тонкой очистки воды здесь используют потому, что котел работает с паром, а значит, исходное качество воды должно быть очень высоким. Такое может обеспечить только обратный осмос, а он может работать только в паре с ионообменным умягчителем воды.

Здесь в качестве умягчения котловой воды и реагентов могут применять соляные растворы, а также вещества для промывки осматических мембран. Как работает каждый из этих умягчителей воды? Начнем с ионного обмена. Основа – смола, богатая натрием. Он со смолой образует непрочные связи. Когда в фильтр для очистки жесткой воды поступают соли, то сильные соли жесткости заменяют слабый натрий. В результате проходит быстрая очистка воды от излишней жесткости.

После такой очистки  фильтр со временем полностью забьется солями жесткости. Его можно восстановить, что в промышленности и делают. Промышленная ионообменная установка имеет в своем арсенале бак регенерации. Там все время хранится сильный соляной раствор. И как только картридж забивается, жесткую воду перекрывают, а картридж отправляют в бак регенерации на восстановление. Там большое количество натрия сменяет соли жесткости и картридж возвращают обратно – очищать воду.

В результате получаются очень вредные сильно солевые отходы. Для выброса в атмосферу таких, потребуется доочистка и обессоливание. Да и без разрешения экологических инстанций утилизировать отходы никто не даст. Зато умягчать воду можно до нужной степени, достаточно пропустить ее через такой фильтр не один раз. Да и самая высокая скорость водоподготовки для котлов наблюдается в этом фильтре.

Теперь обратный осмос. Это система тонкой водоподготовки для котлов. Основу ее составляет мембрана, у которой очень много отверстий, с очень узким диаметром. Не больше диаметра молекулы воды. Вода медленно просачивается через нее. Примеси  остаются внутри мембраны, потом на установку подают давление и вода начинает течь в обратном направлении, оставляя все примеси в ней.

Если вы замените мембрану на другую, то сможете получить другие показатели минерализации, жесткости и т.п. За это обратный осмос в промышленности и ценят. Ну и конечно, за практически стопроцентную водоподготовку для котлов. Здесь тоже имеют место быть вредные отходы. Плюс обратный осмос слишком много воды использует за раз при одной очистке.

 

Водоподготовка для паровых и водогрейных котлов

 

Плюс из-за тонкости мембран и большой возможности легкого их повреждения, обратный осмос нельзя использовать самостоятельно, только в паре с ионообменным устройством или механическим фильтром. В минус обратному осмосу ставят слишком высокую степень очистки воды. Но для котельных как раз такая степень очистки и необходима. Особенно для водоподготовки парового и водогрейного котла для создания пара.

При работе этих фильтров, обязательно после умягчения воды, нужно применять ингибиторы коррозии, так как слишком чистая вода может простимулировать коррозию.

Водоподготовка для паровых и водогрейных котловПосле того, как воду умягчили и обессолили, пришло время устранить вредные и ненужные газы. Настает этап термической дегазации. На нем из воды нужно устранить углекислый газ, которым она насытилась в результате нагрева и кислород. То есть воду доводят до кипения, чтобы оба газа могли испариться.

Чтобы сократить расходы на водоподготовку паровых и водогрейных котлов при эксплуатации установок с малой мощностью, а также для установок с возвращаемым конденсатом, очень часто сегодня применяют спецсистемы с частичной дегазацией. Такие устройства работают только в определенном коридоре температур. Как правило, это пределы – 85-90  градусов по цельсию.

Все лишние газы испаряются с поверхности кипящей воды вместе с выпаром. Когда дегазация частичная, то определенный малый процент газов остается в воде. Это вынуждает делать дополнительную химическую чистку воды.

Если установка более крупная, или конденсат практически невозвратный, то в этом случае можно использовать водоподготовку для паровых и водогрейных котлов или деаэрацию атмосферного, а также вакуумного вида. Газ устраняют при термической деаэрации путем диффузии и дисперсного выделения газов. Чтобы газ вышел абсолютно весь, придется увеличивать пространство контакта. Для этого поток воды распределяют очень тонкими струйками или каплями. Остаточная концентрация после такой термической деаэрации ничтожно мала. Дл того, чтобы получить качественный пар на следующем этапе придется лишь немного добавить связывающего реагента, который поможет удержать остаточные явления газов.

Предпоследним этапом водоподготовки для паровых котлов будет подготовка питательной воды с помощью реагентов. Здесь нужно связать все остаточные пары и жесткость воды, которые остались в малых количествах после всех этапов очистки воды. Нельзя организовать водоподготовку для водогрейного котла, именно парового, если в ней не будет данного этапа связки остаточных явлений. Кроме этого нужно еще обязательно повысить уровень кислотно-щелочного баланса воды. Для этого в воду дозировано добавляют такие реагенты, как фосфаты, сульфиты, что может приводить к повышению электропроводимости воды, выпадении шлама. А это энергетические потери. Такие проблемы в водоподготовке может простимулировать вспенивание котловой воды. Все это может  привести к остановке котельного оборудования из-за резких перепадов давления внутри оборудования.

Водоподготовка для паровых котловЛучше всего в этом случае использовать реагенты, которые не содержат в себе неорганические соли.

После этого официально система водоподготовки для парового и водогрейного котла считается законченной. Но есть еще один важный этап, присутствием которого нельзя пренебрегать. Это аналитический контроль за системой.

Чтобы качество воды всегда было на должном уровне, за качеством воды следует постоянно следить и непрерывно измерять параметры такой воды. Котловую и питательную воду измеряют по уровню кислотно-щелочного баланса, электропроводимости, жесткости воды, щелочности, а также включения кислорода.

На сколько часто нужно проводить замер всех этих параметров, вам скажут производители котла, а также контролирующие органы. Для того, чтобы делать анализ воды, по всей протяженности системы оборудования в котельной есть специальные участки забора воды, которые позволяют взять воду, не останавливая систему.

И наконец, еще один незаменимый фильтр для воды, который часто используют в системе водоподготовки для паровых и водогрейных котлов – это электромагнитный умягчитель воды АкваЩит. Работает такой прибор на безреагентной основе. Он очень прост в использовании, его легко устанавливать и легко демонтировать. Работает с любыми трубами. Вы можете установить его на пластик, металлопластик, чугун, сталь, он одинаково качественно будет чистить от старой накипи любой материал.

Это небольшой прибор с двумя проводами по разные стороны от корпуса. Одевается на трубу, как браслет. Провода наматываются на трубу, в противоположном друг другу направлении. Каждый провод должен быть обмотан не меньше семи кругов. На концы обмоток, потом одевают изоляционные кольца или обматывают изолентой.

Водоподготовка для водогрейных котловОснову этого прибора составляет микропроцессор, который создает электромагнитные волны, которые передают в воду через круги обмоток. Жесткая вода под воздействием этих волн начинает трансформироваться. Соли жесткости резко меняют форму. В новом образе прилипать к поверхностям не представляется возможности. Однако будучи иголками, соли жесткости прекрасно трутся о поверхности со старой накипью. Они ее качественно устраняют. Не оставляя после себя следов. Если вы установите самый маломощный электромагнитный умягчитель воды АкваЩит, на входе воды в свою стиральную машинку, то через месяц качество стирки значительно улучшится, а остатки накипи вы сможете увидеть при сливе воды после стирки. Этот прибор не нужно обслуживать. Ему не нужно менять картриджи, что-то досыпать и восстанавливать. Он все делает сам и при этом еще в состоянии прослужить не меньше  25 лет. Для быта, это один самых популярных методов водоподготовки для паровых котлов. В теплоэнергетике его часто применяют из-за двойного эффекта, который помогает решить задачу с удалением накипи очень просто и быстро. Больше останавливать систему для очистки от накипи не придется.

Водоподготовка для парового и водогрейного котла предусматривает не только умягчение воды, в особенности если котел паровой. В любом случае разрабатывая подобную систему, нужно учесть все особенности использования воды. Установив правильные приборы, вы без труда получите ту воду, которая вам необходима.

vodopodgotovka-vodi.ru

ВОДОПОДГОТОВКА И ВОДОХИМИЧЕСКИЙ РЕЖИМ КОТЕЛЬНОЙ

 

содержание   ..  1  2  3  4  5  6   ..

 

 

ВОДОПОДГОТОВКА И ВОДОХИМИЧЕСКИЙ РЕЖИМ КОТЕЛЬНОЙ

5.1.Водоподготовка имеет большое значение для безопасной и экономичной работы котельных установок. При неудовлетворительной водоподготовке на поверхности нагрева котлов, тепловых сетей и водоподогревателей откладываются твердые отложения, и происходит коррозия поверхности нагрева.

5.2.Водоподготовка подпиточной воды включает в себя умягчение жесткой воды в натри-катионитовых фильтрах и удаление агрессивных газов, кислорода и свободной углекислоты, в вакуумных деаэраторах.

5.3.Вода из городского водопровода мимо или через повысительные насосы холодной воды поступает на охладитель рабочей жидкости. Затем на подогреватель сырой воды (I ступень ХВО) /12/. Нагревается до температуры не выше 40 С и поступает в натрий-катионитовый фильтр /1/. Повышение воды выше 40 С вызывает коксование сульфоугля, что снижает его обменные способности. Умягченная вода после фильтра /1/ поступает на подогреватель химочищенной воды II ступени /13/, где нагревается до температуры 70-80 С, а затем подается на вакуумные деаэраторы /6,7/. Де аэрированная умягченная вода свободно сливается в баки подпиточной воды /10/. Смотри схему №5.

5.4.Натрий-катионитовый фильтр представляет собой вертикальные цилиндрические напорные баки, работающие с давлением выше атмосферного. Нижняя часть фильтра заполнена слоем бетона, на котором расположено нижнее дренажное устройство.

Дренажное устройство предназначено для равномерного распределения поступающей воды по всей площади фильтра. Оно состоит из коллектора с системой дренажных трубок со щелями, щели которых меньше диаметра наименьших зерен сульфоугля /катионита/.

Выше дренажного устройства располагается катионит /сульфоуголь/ высотой 2,2м.

В верхней части фильтра расположено распределительное устройство для воды и солевого раствора. Оно предназначено для равномерного распределения воды и солевого раствора по всей поверхности сульфоугля.

Фильтр имеет два лаза: верхний – для загрузки катионита и для доступа во внутрь фильтра; и нижний – для ревизии нижней дренажной системы.

Катионитовые фильтры обвязаны трубопроводами с арматурой и измерительными приборами – расходомерами, манометрами, термометрами, устройствами для отбора проб воды.

5.5.К вспомогательному оборудованию водоподготовки относится устройство для подготовки раствора соли, необходимого для регенерации фильтра, устройство ''мокрого хранения'' соли /14/, перекачивающие солевые насосы /15/, бак мерник /3/. бак подсоленной воды /8/, солерастворитель /4/.

 

5.5.1.Установка ''мокрого хранения'' соли представляет собой четыре железобетонных бака-хранилища, рассчитанных на трех-четырех месячную потребность соли.

Сухая соль автотранспортом засыпается в ямы. В верхней части ям имеется коллектор с отверстиями для равномерного размыва соли холодной/1/ или горячей водой /2/подаваемой из котельной. Смотри схему №5.

На дне ямы ''мокрого хранения'' соли имеется всасывающая труба (в коробе со щебнем – для фильтрации солевого раствора), по которой раствор насосом /5/ подается в бак мерник /3/ котельной.

5.5.2.Всасывающие трубы из ям ''мокрого хранения'' соли входят в рядом стоящую насосную, где расположены два насоса /5/ для перекачки солевого раствора и трубопроводы с запорной арматурой обвязывающие солевые ямы. Обвязка солевых ям позволяет перекачать солевой раствор из любой ямы в любую, а так же подавать горячую и холодную воду в ямы, как через размывочный коллектор, так и через заборную трубу.

5.5.3.Из ямы ''мокрого хранения'' соли солевой раствор перекачивающими насосами подается в бак мерник. В баке мернике насыщенный раствор разбавляется до 7-10% концентрации и подается в регенерируемый фильтр солевым насосом /15/.

5.5.4.Солевой раствор для регенерации фильтра может быть приготовлен и в проточном солерастворителе /4/. Соль ''сухого хранения'' засыпается в солерастворитель и пропускают через него холодную воду. Полученный солевой раствор может быть подан как непосредственно в фильтр, так и на бак мерник. Этот способ приготовления солевого раствора применяется при выходе из строя перекачивающих насосов /5/ или солевого насоса /15/.

5.6.Цикл работы фильтра состоит из операций взрыхления, регенерации, контакта, отмывки, умягчения.

5.6.1.Цель взрыхления – устранить уплотнения слежавшейся массы катионита, для обеспечения более свободного доступа регенерационного раствора к зернам катионита. Взрыхление производится отмывочной водой подаваемый насосом взрыхления /9/ из бака подсоленной воды /8/. В случае отсутствия отмывочной воды, взрыхление производится холодной водой.

При взрыхлении сначала открывается задвижка на линии подвода взрыхляющей воды, а затем задвижку на линии сброса воды в верхней части фильтра в канализацию. Взрыхление должно производится до тех пор, пока вода, отходящая от фильтра вода, не станет прозрачной. При взрыхлении не допускается полное опорожнение промывочного бака, во избежание засоса воздуха в фильтр.

5.6.2.Регенерация катионита в фильтре производится раствором соли, приготовленным в баке мернике. Раствор соли 7-10% концентрации подается солевым насосом в фильтр, он проходит сверху вниз сквозь слой катионита и выходит в канализацию. При помощи дренажной задвижки на фильтре устанавливаем скорость подачи раствора 3-4м3/час. В процессе регенерации необходимо следить, чтобы в фильтре был все время подпор жидкости. После пропуска раствора соли, закрывается дренаж, фильтр ставится на контакт.

5.6.3.Контакт катионита с раствором соли длится 5-10 минут. Он необходим для дополнительного обменного процесса между катионами натрия и солями жесткости. При увеличении времени контакта свыше 15 минут эффект регенерации возрастает незначительно.

5.6.4.После окончания контакта производится отмывка сульфоугля от регенерационного раствора и продуктов регенерации. Для отмывки фильтра холодную воду пропускаем сквозь катионит сверху вниз 25-45 минут. Сбрасываем воду в канализацию. Сброс производится до тех пор, пока отмывочная вода станет соленой на вкус. Тогда фильтр переключается на отмывку в промывочный бак. Отмывка в бак заканчивается тогда, когда отмывочная вода становится прозрачной и ее общая жесткость не превышает 200мкг.экв/кг, а концентрация хлоридов превышает их содержание в исходной воде не более чем на 30мг/л.

Если бак отмывочной воды заполнится раньше, чем отмоется фильтр, отмывка продолжается в канализацию.

Катионитовый фильтр, поставленный после регенерации в резерв, в избежания пептизации катионита отмывается от регенерационного раствора только частично. В этом случае отмывка в бак не ведется, и фильтр оставляется в резерве со слабым регенерационным раствором. Окончание отмывки и отмывка на бак производится непосредственно перед включением фильтра в работу.

5.6.5.Закончив отмывку, фильтр включается в работу. Умягченная вода поступает через задвижку на входе в верхнее распределительное устройство, проходит через фильтр, через катионит и далее через дренажную систему, через задвижку на выходе отводится на подогреватель II ступени ХВО /13/.

При включении фильтра в работу необходимо еще раз произвести химический контроль выходящей воды, которая должна отвечать следующим показателям: жесткость не более 200мкг.экв/л.; хлориды – 30мг/л больше, чем их содержание в исходной воде.

Во время умягчения следует периодически /один-два раза в смену/, открывать воздушный вентиль для выпуска скопившегося в фильтре воздуха.

По достижении остаточной жесткости в умягченной воде 200мкг.экв/л. фильтр отключают и повторяют цикл операций.

5.6.6.Для подготовки питательной воды паровых котлов ДЕ-10-14ГМ применяется двухступенчатое умягчение. При двухступенчатом умягчении: исходную воду вначале умягчают в основных катионитовых фильтрах (фильтры I ступени) /1/ до остаточной жесткости 1000мкг.экв/л., а затем доумягчают в катионитовых фильтрах II ступени /2/ до конечной жесткости 20мкг.экв/л.

5.7.Химически очищенная вода после натрий-катионитовых фильтров I ступени /1/ поступает на подогреватель ХВО II ступени /13/, где нагревается до температуры 70-80 С. На вход подогревателя ХВО II ступени поступает еще и подпиточная вода после подпиточных насосов /11,17/ на повторную деаэрацию. Ее количество регулируется в ручную.

5.7.1.Греюшая вода поступает сразу на подогреватель ХВО II ступени, а затем последовательно на подогреватель I ступени и на регулятор ''Температуры ХВО''. В случае работы без подогревателя ХВО I ступени, теплоноситель после подогревателя II ступени ХВО поступает на регулятор ''Температуры ХВО'' через байпас.

5.7.2.Регулятор ''Температуры ХВО'' регулирует температуру на выходе воды с теплообменника ХВО II ступени. Температуру на выходе воды с подогревателя ХВО I ступени, регулируется в ручную. В случае ее повышения до 38 С в операторской срабатывает звуковая и световая сигнализация.

5.7.3.Греющая и нагреваемая вода на подогревателе ХВО II ступени подключены противотоком, а на подогревателе ХВО I ступени – прямотоком.

5.7.4.Для аварийной подпитки тепловых сетей напрямую, минуя деаэрацию необходимо:

- закрыть задвижку на входе в подогреватель ХВО II ступени

- открыть перемычку между трубопроводами (выход натрий-катионитовых фильтров и нагнетательный коллектор подпиточных насосов /11,17/).

Эта линия подпитывает тепловые сети химически очищенной водой давлением исходной воды, без подпиточных насосов (пуск после остановки со сливом воды, выход из строя подпиточного насоса).

5.8.После подогревателя ХВО II ступени химически очищенная вода поступает на вакуумную деаэрационную установку подпитки. Она включает в себя вакуумные деаэрационные колонки производительностью 25 т/час /7/, 50 т/час/6, охладитель выпара колонки /16/, бак деаэрированной воды /10/, эжектора – общие с колонками ГВС. Смотри схему №15. Одна из деаэраторных колонок подпитки находится в работе, а другая в резерве, в зависимости от нагрузки на узел ХВО.

5.9.Режимная карта натрий-катионитовых фильтров I и II ступеней котельной по ул. Товарищеская

 

№ пп Показатели Ед. изм. Значение
  Фильтры I ступени.    
  Диаметр фильтра мм  
  Катионит   Сульфоуголь
  Высота загрузки мм  
  Площадь фильтра м2 3,14
  Объем катионита м3 6,9
  Рабочая обменная способность гр-экв/м3  
  Умягчение    
  Жесткость воды при включении в работу мкг-экв/ кг 1000-200
  Жесткость при срабатывании фильтра мкг-экв/ кг 1500-200
 9 Среднее количество воды за фильтроцикл Ер. * Gк. G ум.= Жисх. - Жум. м3  
  Взрыхление    
  Время взрыхления мин 20-30
  Регенерация    
  Удельный расход соли на 1м3 сульфоугля кг  
  Расход технической соли на регенерацию кг  
  Процент содержания соли в растворе %  
  Расход раствора соли на регенерацию м3 4,14
  Скорость пропуска раствора соли м3/ч 3-5
  Время пропуска солевого раствора мин.  
  Время контакта мин.  
       
  Фильтры II ступени.    
  Диаметр фильтра мм  
  Катионит   Сульфоуголь
  Высота загрузки мм  
  Площадь фильтра м2 0,23
  Объем катионита м3 0,23
  Рабочая обменная способность г-экв/м3  
  Жесткость воды при включении в работу мкг-экв/кг 15-20
  Жесткость при срабатывании фильтра мкг-экв/кг 15-20
  Среднее количество воды за фильтроцикл м3  
  Взрыхление    
  Время взрыхления мин. 10-15
  Регенерация    
  Удельный расход соли на 1м3 сульфоугля кг  
  Расход технической соли на регенерацию кг  
  Процент соли в растворе %  
  Расход раствора соли на регенерацию м3 0,138
  Скорость пропуска соли м3/час 3-5
  Время контакта мин. 10-15
Экспликация оборудования ХВО
 № пп Наименование оборудования Характеристика оборудования Кол-во
  Натрий катионитовый фильтрI D=2000мм  
 2 Натрий катионитовый фильтрII D=1000мм  
  Бак-мерник раствора соли V=3 м3  
  Солерастворитель С-0.2-0.5 D=1000мм  
  Насос перекачки раствора соли К-20-30 G=20м3/ч, Н=30м.в.ст, n=2900об/мин,N=4кВт  
  Вакуумный деаэратор ВД-50 G=50м3/час  
  Вакуумный деаэратор ВД-25 G=25м3/час  
  Бак промывки фильтров ОСТ-34-42-395-77 V=30 м3  
  Насос промывки фильтра К-45-30 G=45м3/ч, Н=30м.в.ст, n=2900об/мин,N=5кВт  
  Бак подпиточной воды БП-200 V=200 м3  
  Насос подпиточной воды К-90-35 G=90м3/ч, Н=35м.в.ст, n=2900об/м, N=15кВт  
  Подогреватель холодной воды 3-12-ОСТ.34-588-68 Q=1,1Гкал/ч,tmax=40СGт/н=10т/ч,F=30м2.  
  Подогреватель хим.очищенной воды 3-13-ОСТ.34-588-68 Q=2,2Гкал/ч,tmax=81С Gт/н=50т/ч,F=60м2  
  Солевая яма    
  Насос раствора соли 8/15ДСУ4 G=8м3/ч, Н=15м.вюст, n=2900об/м,N=3кВт  
  Охладитель выпари ОВВ-8 F=8м2  
  Насос подпиточной воды К-20-50 G=20м3/ч, Н=50м.в.ст, n=2900об/м, N=15кВт  

 

 

 

 

 

 

 

 

 

 

 

содержание   ..  1  2  3  4  5  6   ..

 

 

zinref.ru

Особенности проведения химводоподготовки для паровых котлов

Исправность и эффективная работа парового котла зависит от многих факторов. В их список входит наличие накипи и различных загрязняющих частиц на внутренних стенках теплообменника. Если накипь перед первым запуском котельного устройства отсутствует, то ржавчина, масляные загрязнения или окалина в новом котле всегда имеются. Конечно, от их нужно избавиться. Для этого выполняются такие процессы как щелочение и продувка котла, а также химводоподготовка.

Подготовка к щелочению котла

Согласно правилам порядок ее осуществления является таким:

  1. Выполняют внешний осмотр агрегата низкого давления. Это позволяет убедиться в том, что все его трубопроводы, автоматика, аварийные приборы, устройства, которые регулируют и подают воду, пар, воздух и топливо, собраны правильно.
  2. Проводят осмотр и промывку питательных баков, деаэраторов, вспомогательных и основных трубопроводов.

Правила не предусматривают подвергание щелочению пароперегревателя. Конечно, чтобы избежать ремонта или непредвиденной остановки его также надо очистить от ржавчины и масляных загрязнений. Их устраняют путем продувки паром под немалым давлением.

Щелочение

Согласно большинству инструкций с множеством требований и правил его выполняют в таком порядке:

  1. Открывают вентиль или предохранительный клапан для спуска воздуха.
  2. Заливают в котел с обмуровкой химически очищенную воду. Об особенностях ее очистки будет написано ниже. Воду заливают в барабан до тех пор, пока ее поверхность не достигнет его нижнего предельного уровня. Согласно правилам такой уровень нужно будет поддерживать в течение всей процедуры щелочения. Иначе возникнет непредвиденный ремонт или реконструкция.
  3. Растапливают котел и ждут, пока давление поднимется до уровня 75-100% от рабочей нормы. При этом, если номинальное давление составляет 1,4 или 2,4 МПа, то рабочую характеристику поднимают не выше 1,3 МПа или 1,4 МПа. Обогрев котельного устройства с хорошей обмуровкой следует проводить путем разведения огня. Можно разогревать котел огнем и паром одновременно. Однако такой режим допустим только тогда, когда нижний барабан можно прогреть паром. Уровень давления пара не должен превышать 0,4 МПа. Комбинированный режим используют только для разогрева. Далее переходят на обогрев огнем.
  4. Вводят в барабан котла с безопасной обмуровкой реагенты: кальцинированную соду, тринатрийфосфат или едкий натрий. Согласно технологическим картам их введение можно провести через любой патрубок барабана. Расчет количества этих веществ проводят по сложным формулам или же облегчают жизнь, воспользовавшись технологической картой.
  5. Через каждые 3 часа проводят диагностику котловой воды в барабанах и камерах экранов. Для этого берут пробы. При анализе определяют щелочность и уровень загрязнения, а также устанавливают, какие изменения нужно провести в водно-химическом режиме (ВХР).
  6. Через 12-20 часов после добавления реагентов приступают к несильной продувке. Со временем ее интенсивность увеличивают. При этом делают это так, чтобы сила продувки была самой большой перед концом щелочения. Благодаря этому удаляется грязь, которая накопилась внизу энергетического устройства с безопасной обмуровкой.

Схема парового котла

Стоит добавить, что продувка котла зависит от загрязненности. Если очередной анализ проб показывает большое количество грязи, то усиливают продувку с нижних точек котельного агрегата. Ее проводят под давлением, уровень которого составляет 0,5-0,6 МПа.

Щелочение проводят до тех пор, пока в пробах взятой на анализ воды не будет грязи. В зависимости от загрязнения очистной вхр может длиться от 48 до 86 часов. После этой процедуры сливают воду. При этом ее температура не должна превышать 50-60 °С, а давление не должно быть больше атмосферного. Трубы энергетического котла с обмуровкой и надежной автоматикой нужно промыть, залив в них нагретую в барабанах воду.

Строение парового котлаПосле этого можно заливать смягченную очищенную воду и приступать к эксплуатации котельного устройства. При этом в течение первого месяца проводят усиленную продувку. Продувочную воду подают под давлением, которое превышает расчетное в два раза.

Если между проведением очистного режима и началом эксплуатации агрегат с безопасной обмуровкой должен простаивать 10 и более дней, то необходимо провести его консервацию. Согласно требованиям консервацию можно и не выполнять, однако тогда перед запуском в эксплуатацию снова придется очищать барабаны и трубы агрегата, применяя реагенты.

Требования к состоянию котла

Они таковы:

  1. Отсутствие накипи.
  2. Отсутствие химических реакций и коррозии.

Накипь может возникать только в случаях заливки в агрегат, проходивший процедуру консервации, жесткой воды, в которой есть известняки. Стенки, на которых накапливается много накипи, сильно перегреваются. Из-за этого возникает механическое повреждение труб, течь жидкости и аварийные ситуации, а также ремонт или реконструкция оборудования.

Накипь внутри котлаХимические реакции в теплообменнике могут возникать в результате слишком малого рН. Избыточное количество кислот является более разрушительным. Вода с высоким рН превращается в щелочной раствор, который во время рабочего режима, не знавшего ремонта котла, приводит к образованию пены, щелочному растрескиванию и повышению хрупкости металлических частей агрегата, проходившего когда-то процедуру консервации. В итоге возникает нежеланный ремонт и сокращается срок эксплуатации.

Радостным моментом является то, что многие современные энергетические устройства с хорошей автоматикой способны противостоять щелочному раствору. Исключение составляют крышки корпусов. Правда, их ремонт не сложен.

Коррозия труб, топки и других элементов котельного оборудования, которое могло быть на длинной консервации, возникает в случае имеющейся в воде растворенных газов.

Всех этих негативных последствий и возможного ремонта или реконструкции можно избежать, если провести правильную, соответствующую всем требованиям химводоподготовку подпиточной воды.

Способы обработки подпиточной воды

Сначала стоит отметить то, что химводоподготовку такой воды можно осуществлять как предварительно, так и за несколько секунд до впрыска внутрь безопасного водогрейного агрегата с хорошей автоматикой. Лучше проводить предварительную подготовку воды. Это позволит провести измерение количества ее элементов и осуществить расчет необходимой концентрации веществ для осуществления возможной дополнительной очистки.

Водоподготовка может проводиться такими способами:

  1. Ионный обмен.
  2. Обратный осмос. Правила его проведения предусматривают пропускание подпиточной воды через полупроницаемую мембрану. Качество получаемой жидкости во время такой водоподготовки очень высокое, поскольку через мембрану могут пройти только молекулы воды. Все примеси преодолеть этот барьер не могут.
  3. Умягчение воды. ВХР умягчения предусматривает добавление к жидкости гидратированного известняка (гидроксида натрия). Он вступает в химическую реакцию с бикарбонатом магния и кальция.

Такое смягчение жидкости приводит к уменьшению щелочной (временной) жесткости. Если же нужно снизить длительную жесткость, то используют кальцинированную соду, которая также вступает в химическую реакцию с известняком.

Ионный обмен

Этим способом чаще всего проводят водоподготовку для тех жаротрубных энергетических котлов, назначением которых является производство насыщенного пара. Для его реализации используют ионообменный фильтр.

Водоподготовка методом ионного обмена состоит из таких этапов:

  1. Пропускание через фильтр с ионитом 7-12% раствора обычной соли (хлорида натрия). Во время этого процесса в ионите накапливается натрий.
  2. Пропускание воды через фильтр. Во время ее прохождения через ионит ионы кальция и магния замещаются ионами натрия. В результате в воде не остается элементов, которые приводят к образованию накипи, сокращению эксплуатации и частым остановкам оборудования.

Особенностью этого очистного ВХР процесса является то, что рано или поздно ионы натрия в смоле закончатся, и возникнет потребность в повторной зарядке фильтра. Определение момента восстановления состояния ионита проводится путем измерения двух показателей:

  1. Продолжительности работы фильтра.
  2. Количества пропущенной подпиточной воды.

На основе этих данных проводят расчет остаточного количества ионов натрия. Правда, перед началом всей процедуры нужно измерить концентрацию и осуществить расчет количества ионов, которые образуют накипь.

Промывка парового промышленного котлаТакая технологическая водоподготовка может проводиться в течение многих лет эксплуатации агрегата, бывшего когда-то на короткой консервации. Этот непрерывный ВХР возможен даже тогда, когда вода имеет высокую временную жесткость. Правда, есть одно требование: количество конденсата, которое возвращается, должно быть больше 50%. При невыполнении этого требования подготовку воды следует проводить, применяя более сложный тип ионного обмена.

Альтернатива – смягчение воды с помощью кальцинированной соды перед проведением ионного обмена. Такая хитрость позволяет уменьшить нагрузку на ионит и повысить его срок непрерывной эксплуатации.

Обесщелачивание и деминерализация

Метод ионного обмена позволяет смягчить воду. Однако количество растворенных в ней твердых веществ (TDS), а также уровень рН остаются неизменными. Часто измерения показывают, что TDS и рН являются слишком высокими, что не соответствует требованиям. Поэтому нужно снижать их уровни, проведя перед этим небольшие расчеты.

Снизить щелочность позволяет процедура обесщелачивания. Она предусматривает пропускание воды через:

  1. Обесщелачиватель.
  2. Дегазатор.
  3. Фильтр ионного обмена.

Часто эти три устройства размещают в одном корпусе. Стоит добавить, что согласно требованиям и правилам обесщелачиватель никогда не используют отдельно. Это потому, что из него выходит довольно кислый с постоянной жесткостью раствор. Он же приведет к ремонту, который может осуществить пмр.

Обесщелачивание проводят для тех паровых энергетических устройств, в которые возвращается очень малый процент конденсата.

Что касается деминерализации, то ее назначение – это лишить воду практически всех солей и предупредить возможные остановки. Она заключается в использовании двух ионных фильтров и дегазатора. В одном фильтре проходит катионный обмен, в другом – анионный обмен.

Благодаря деминерализации можно получить воду очень хорошего качества. В жидкости фактически не остается TDS, что, конечно, удовлетворяет все требования. Но, стоит брать в расчет то, что подпиточная вода с большим количеством взвешенных твердых частиц быстро выводит из строя ионные фильтры. А они дорогие. Продлить их эксплуатацию при такой воде можно путем предварительной очистки или непрерывного фильтрования жидкости.

Выбор способа водоподготовки

Самой лучшей является деминерализация. Однако установка для этого способа стоит немалых денег. Кроме этого нужно часто анализировать состояние воды и проводить расчеты количества используемых химических соединений для зарядки фильтров. Поэтому в расчет приходится брать более дешевые способы водоподготовки.

Если используется жаротрубный котел с хорошей обмуровкой, то химическую подготовку воды проводят самым простым ионообменным способом. Когда же жидкость имеет много TDS или процент возврата конденсата меньше 40%, то возможны следующие варианты:

  1. Подпиточную воду обрабатывают содой/известняком и далее проводят ионный обмен.
  2. Применяют установку для обесщелачивания.

Что касается водотрубных котлов с качественной обмуровкой, то для их безопасной и непрерывной работы подготовка воды должна происходить либо способом деминерализации, либо обратным осмосом.

poluchi-teplo.ru

АКВА Композит - ВОДОПОДГОТОВКА ПАРОВЫХ КОТЛОВ

Основной задачей подготовки воды для паровых котлов является снижение коррозионной и накипной активности воды. Коррозия поверхностей нагрева котлов подогревателей и трубопроводов тепловых сетей вызывается кислородом и углекислотой, которые проникают в систему вместе с питательной и подпиточной водой.

Для водоподготовки паровых котлов мы предлагаем следующие решения:Boilex T410A,B,C - ингибитор коррозии и накипеобразованияBoilex E460A,B,C - ингибитор коррозии и накипеобразования для пищевой промышленностиBoilex E470- ингибитор коррозии и накипеобразования - если пар контактирует с пищевыми продуктамиAMERCOR 8730- коррекция рН и содержания кислорода в конденсатеBoilex T410 BP -ингибитор коррозии и накипеобразования, рекомендуется при повышенной жесткости воды

Качество питательной воды для паровых водотрубных котлов с рабочим давлением 1,4МПа в соответствии с нормативными документами должно быть следующим:

- общая жесткость 0,02мг.экв/л,

- растворенный кислород 0,03мг/л,

- свободная углекислота - отсутствие.

При выборе схем обработки воды и при эксплуатации паровых котлов качество котловой (продувочной) воды нормируют по общему солесодержанию (сухому остатку): величина его обуславливается конструкцией сепарационных устройств, которыми оборудован котел, и устанавливается заводом изготовителем. Солесодержание котловой воды для котлов КЕ-25-14с не должно превышать 3000 мг/л.

 

 

ИСХОДНЫЕ ДАННЫЕ

 

 Анализ исходной воды

 

   

Обозна

Единица измерения

Наименование

чение

мг.экв/л

мг/л

1.

Сухой остаток

-

-

2.

Жесткость общая

Жо

-

-

3.

Жесткость карбонатная

Жк

-

-

4.

5.

6.

Катионы:        кальций

                        магний

                        натрий

Ca2+

Mg2+

Na+

-

-

7.

Сумма катионов

Кат

-

-

8.

9.

10.

Анионы:        хлориды

                сульфаты

                       бикарбонаты

Cl

SO42-

HCO3-

-

-

-

-

-

-

11.

Сумма анионов

АН

-

-

12.

 

 

 

 

 

2.2. ВЫБОР СХЕМЫ ПРИГОТОВЛЕНИЯ ВОДЫ

Выбор схемы обработки воды для паровых котлов проводится по трем основным показателям:

- величине продувки котлов;

- относительной щелочности котловой воды;

- по содержанию углекислоты в паре.

Сначала проверяется, допустима ли наиболее простая схема обработки воды натрий катионирования по этим показателям.

Продувка котлов по сухому остатку, % определяется по формуле

Рп=(Сх*Пк*100)/(Ск.в*x*Пк

где Сx - сухой остаток химически очищенной воды, мг/л,

Cx=Св+2,96Н-10,84Н

Пк - суммарные потери пара; в долях паропроизводительности котельной

Ск.в - сухой остаток котловой воды, принимается по данным завода изготовителя котлов

Относительная щелочность котловой воды равна относительной щелочности химически обработанной воды, %, определяется по формуле

Щ’=40*Жк*100=

где 40 - эквивалент Щ мг/л

 

Щi- щелочность химически обработанной воды, мг.экв/л, принимается для метода Na -катионирования, равной щелочности исходной воды (карбонатной жесткости).

Количество углекислоты в паре определяется по формуле:

Суг=22*Жк*a0*(a'-a")=   < 20мг/л

где a0 - доля химически очищенной води в питательной;

a' - доля разложения НСO3 в котле, при давлении 14кгс/см2(1,4МПа) принимается равной 0,7

a'' - доля разложения НСO3 в котле, принимается равной 0,4

Производительность цеха водоподготовки принимаем по количеству сырой воды, поступающей на химводоочистку.

Следовательно принимаем схему обработки воды путем натрий-катионирования.

Gцр=Gс.в

 

РАСЧЕТ ОБОРУДОВАНИЯ ВОДОПОДГОТОВИТЕЛЬНОЙ УСТАНОВКИ

Расчет оборудования необходимо начинать с хвостовой части т.е. с натрий-катионитных фильтров второй ступени, т.к. оборудование должно обеспечить дополнительное количество воды, идущей на собственные нужды водоподготовки.

 

Натрий-катионитные фильтры второй ступени.

Для сокращения количества устанавливаемого оборудования и его унификации принимают однотипные конструкции фильтров для первой и второй ступени. Для второй ступени устанавливаем дла фильтра: второй фильтр используется для второй ступени в период регенерации и одновременно является резервным для фильтров первой ступени катионирования.

Принимаем к установке фильтр ФИПА 1-1, 0-6

Ду = 1000мм, Н=2м.

Количество солей жесткости полдлежащих удалению определяется по формуле:

Ап=24*0,1*Gцр

где 0,1 - жесткость фильтрата после фильтров первой ступени катионирования, мг.экв/л

Gцр - производительность натрий-катионитового фильтра, м3/ч

Число регенерации фильтра в сутки:

n=A/¦*h*E*nф

Где h - высота слоя катионита, м

¦ - площадь фильтрования натрий-катионитного фильтра,

¦=0,76м2,

n - число работающий фильтров

E - рабочая обменная способность катионита,г.экв/м^

E=j*y*Eп-0,5*g*0,1=г.экв/м3

где j - коэффициент эффективности регенерации принимается по табл. 5-5 [5]j=0,94

y - коэффициент, учитывающий снижении обменной способности катионита по Са+ и Mg+ за счет частичного задержания катионов, принимается по табл. 5-6 [5] y=0,82

Eп - полная обменная способность катионкта, г.экв/м3, принимается по заводским данным

g - удельный расход воды на отмывку катионита м3/м3, принимается по табл. 5-4 [5] g=7

0,5 - доля умягчения отмывочной воды

Межрегенерационный период работы фильтра

t =1*24/0,04-2 = 598ч

2 - время регенерации фильтра, принимаем

Скорость фильтрования

wф=11,66/(0,76*1)=15,34м/ч

Расход 100%-ной соли на одну регенерацию натрий-катионитного фильтра П ступени:

QNaCl=424*0,76*2*350/1000=225,57 кг/рег

где g - удельный расход соли на регенерацию фильтров, 350г.экв/м3 по табл. 5-4 [5]

Объем 26%-ного насыщенного раствора соли на одну регенерацию составит:

Qн.р=QNaCl*100/(1000*1,2*26)=225*57*100/(1000*1,2*26)=0,72м3

где 1,2 - удельный вес насыщенного раствора соли при t =20°С

26 - 26%-ное содержание соли NaCl в насыщенном растворе при t =20°С

Расход технической соли в сутки

Qтехн= QNaCl*100/93=225*57*0,04*100*1/93=9,7 кг/сут

где 93 - содержание NaCl в технической соли, %

Расход технической соли на регенерацию фильтров в месяц

Qм=Qт*30=9,7*30=291 кг

Расход воды на регенерацию натрий-катионитного фильтра слагается из:

а) расхода воды на взрыхляющую промывку фильтра

Вв=b*z/100=30*76*60*15/1000=2,05м3

где b - интенсивность взрыхляющей промывки фильтров л/м2

принимается по табл. 5-4 [5], b=30 л/м2

z - продолжительность взрыхляющей промывки, мин.

принимается по табл. 5-4 [5], z=15

б) расхода воды на приготовление регенерационного раствора соли

            Врег=QNaCl*100/(1000*g*r)=225,57*100/(1000*7*1,04)=3,1м3

где 100 - концентрация регенерационного раствора, принимается по табл. 5-4 [5]

r - плотность регенерационного раствора, принимается по табл. 15.6 [5], r=1,04 кг/м3

в) расхода воды на отмывку катионита от продуктов регенерации:

            Вотм=q*¦*tрег=7*0,76*2=10,64 м3

где q - удельный расход воды на отмывку катионита, принимается 7 м3/м3 по табл. 5-4 [5]

Расход воды на одну регенерацию натрий-катионитного фильтра П-ой ступени с учетом использования отмывочных вод для взрыхления:

Врег=2,05+3,1+(10,64-2,05)=13,74м3/рег

Расход воды в сутки в среднем составит:

Всут=13,74*0,04 = 0,55м3/сут

2.3.2. Натрий-катионитные фильтры 1 ступени

Принимаются к установки как и для второй ступени два фильтра Æ = 1000мм, Н=2м.

Количество солей жесткости подлежащих удалению определяется по формуле:

A1=24*(К0-0,l)=24х(8,6-0,1)х11,66=2378,64 г.экв/л

где Ж- общая весткость воды, поступающая в натрий-катионитные фильтры

0,1 - остаточная жесткость после первой ступени катионирования.

Рабочая обменная способность сульфоугля при натрий-катионировани.

Е=0,74*0,82*550-0,5*7*8,6=304 г.экв/м3

Число регенерации натрий-катионитных фильтров первой ступени:

            n=2378,64/(0,76*2*304*2)=2,57 рег/сут

Межрегенерационный период работы каждого фильтра

            Т1=24*2/2,57-2=16,67

Нормальная скорость фильтрации при работе всех фильтров:

            wф=11,66/(0,76*2)=7,67

Максимальная скорость фильтрации (при регенерации одного из фильтров)

            wф=11,66/(0,76*(2-1))=15,34 м/ч

Расход 100%-ной соли на одну регенерацию натрий-катионитного фильтра первой ступени

            QNaCl=304*0,76*2*150/1000=69,31 кг/рег

Объем 26%-ного насыщенного раствора соли на одну регенерацию

            Q=69,31*100/(1000*1,2*26)=0,22 м3

 

Расход технической соли в сутки

            Qс=69,31*257*100*2/93=383,07 кг/сут

Расход технической соли на регенерацию натрий-катионитных фильтров первой ступени в месяц

Qм=30*383,07=11492 кг/мес.

Расход воды на взрыхляющую промывку фильтра

            Впр=3*0,76*60*12/1000=2,05 м3

Расход воды на приготовление регенерационного раствора соли

            Врег=69,21*100/(1000*7*1,04)=0,95 м3

Расход воды на отмывку катионита

            Вотм=7*0,76*2=10,64 м3

Расход воды на одну регенерацию натрий-катионитного фильтра 1 ступени с учетом использования отмывочных вод для взрыхления

            В=2,05+0,95+(10,64-2,05)=11,59 м3/рег

Расход воды на регенерацию натрий-катионитных фильтров 1 ступени в сутки

            Всут=11,59*2,57*2=59,57 м3/сут

Среднечасовой расход воды на собственные нужды натрий-катионитных фильтров первой и второй ступени:

            в=59,57*0,55/24=2,51 м3/ч

industrialwater.ru

АКВА Композит - Водоподготовка для котлов

 

К воде, применяемой в различных отраслях промышленности, могут предъявляться различные требования. Отдельное место по ряду требований занимает водоподготовка для котлов и котельных. Широк и диапазон используемых технических средств и способов водоподготовки зависящий от требуемых параметров подготавливаемой воды. Очевидно, что для воды используемой в фармацевтической или пищевой промышленности, предъявляются иные требования, чем к воде предназначенной для систем охлаждения. Огромные количества воды использует энергетика: малая - отопление, горячее водоснабжение, кондиционирование, водоподготовка котлов - и большая – производство электрической энергии.

 

Водоподготовка для котлов малого давления (водогрейных котлов)

Малая энергетика, обслуживающая коммунальное хозяйство и промышленные предприятия пищевой промышленности, применяет котлы низкого давления и малой производительности (водогрейные котлы в модульных котельных систем местного нагрева воды). В этом случае, к подготовке питательной воды предъявляются свои требования. Достаточно снизить концентрацию солей жесткости в воде, поступающей в водогрейный котел, до 1,5 мг.экв/л, а в питательной воде паровых котлов в зависимости от давления до 0,1-0,5 мг.экв/л. Водоподготовка в этом случае может быть обеспечена за счет использования ионообменных материалов: сульфоугля или катионитовых ионообменных смол, а также дополнительной коррекционной водоподготовки. Естественно, что технологическая схема водоподготовки должна предусматривать узел приготовления раствора хлорида натрия для регенерации ионообменного материала, промывку ионита водой после регенерации, сброс засоленных стоков.

В ряде случаев, удается обойтись вовсе без применения оборудования для водоподготовки котлов. В таком случае применяют специализированные реагенты для паровых и водогрейных котлов, позволяющие достичь требуемых параметров воды. Замена предварительного умягчения и кондиционирования воды на реагенты зачастую приводит к значительному экономическому эффекту.

Одной из наиболее распространенных проблем, связанных с использованием котельных в промышленности, считается образование отложений на теплопередающих поверхностях, связанных как с повышенной жесткостью воды, так и  с последствиями коррозии. Особый вред отложения наносят паровым котлам, оседая на поверхности турбин. Для исключения возможности образования отложений в системах водоподготовки паровых котлов сегодня используются самые разнообразные методы.

Водоподготовка для теплоэнергетики

В соответствие с "Правилами установки и безопасной эксплуатации котлов", питательная вода котлов высокого давления должна содержать растворенных веществ не более 10 мкг/л. Такая норма вынуждает применять сложную, многостадийную схему водоподготовки и очистки воды.

После механической фильтрации, на первой ступени водоподготовки, подогретая сырая, то есть неочищенная, вода поступает на стадию предварительной (химической) очистки и умягчения. На этой стадии максимально снижается концентрация в воде солей жесткости, железа, углекислоты, кремниевой кислоты, примесей органических веществ, твердых взвешенных частиц. Эти задачи водоподготовки решаются добавлением к сырой воде осадительных реагентов, коагулянтов и(или) флокулянтов. Малорастворимые соединения выпадают в осадок, сворачиваются в флокулы и могут быть механически (отстаиванием) отделены.

Процесс осветления происходит в отстойниках-светлителях. Осветленная вода в процессе водоподготовки проходит, песочные фильтры и далее поступает на целый ряд ионообменных фильтров: катионитовых и анионитовых. Только после этого удается достичь установленной нормы в водоподготовке: общего содержания примесей не более 10 мкг/л. Чем меньше примесей останется в предварительно очищенной воде, тем ниже нагрузка на ионообменные фильтры, тем реже их надо выводить на регенерацию, реже промывать после регенерации предварительно умягченной водой, тем меньше расход реагентов и объемы хлоридсодержащих стоков. Поэтому к подбору флокулянтов, коагулянтов и вообще оптимизации стадий предварительной водоподготовки следует подходить с особым вниманием.

Сложность задачи водоподготовки, решаемой на стадии химического или предварительного умягчения, заключается в том, что в ограниченном объеме одновременно протекает несколько химических реакций и процессов. Естественным решением задачи повышения эффективности очистки воды от солей жесткости является разбиение процесса на несколько стадий. Уже при двух стадийной очистке удается достичь суммарного содержания ионов кальция и магния 0,6 мг.экв/л; при 5 стадиях - 0,16 мг.экв/л. Естественно, что при этом многократно снижается нагрузка на этап ионообменной очистки, сокращается количество регенераций ионообменников, снижаются расход реагентов, объемы сбрасываемых засоленных стоков.

Нельзя забывать при решении столь сложной задачи и об интенсивности перемешивания очищаемой воды и реагентов. Интенсивное перемешивание раствора при добавлении в него коагулянтов приводит к разбиванию образующихся флокул, делая практически бесполезным использование дорогостоящих флокулянтов. Изменение технологии предварительного умягчения определяет и аппаратурное оформление процесса.

Для самостоятельного выбора решения перейти в КАТАЛОГ

Получить консультацию по подбору: КОНТАКТЫ

Заполнить ОПРОСНЫЙ ЛИСТ

industrialwater.ru

Подготовка питательной воды для котла и котельных: дегазация, очистка реагентами

Очень часто, когда специалисты в сервисных центрах разбираются с причинами, которые привели к поломке котла парового отопления, они приходят к выводу, что причиной является вода, качество которой не позволяет использовать ее в системах отопления.

Наличие в воде различных примесей приводит к коррозийному повреждению оборудования и образованию отложений солей на деталях котла. Если отложения будут обнаружены своевременно, то их можно удалить без последствий. Если же они накопятся в достаточном количестве, то теплообменные поверхности могут перегреться, что приведет к повреждениям.

Содержание

Водоподготовка для паровых котельных

Подготовка воды для паровых котлов Если в системе отопления используют воду, не прошедшую предварительную подготовку, то качество воды для паровых котлов может снизиться, и произойдет вспенивание теплоносителя с его дальнейшим уносом.

В итоге, не только сократится количество пара, но и существенно сократится срок службы оборудования и систем транспортировки. Именно по этим причинам, строго регламентируется водоподготовка для паровых котельных.

Способов, позволяющих правильно подготовить воду для использования в системах отопления, существует довольно много. Их выбор зависит от того, какие характеристики имеет исходная вода, и какова производительность оборудования.

Котлы утилизаторы, как правило, не оснащаются собственными топочными камерами. Для сгорания в форсуночной камере используются газы и выхлопы.

Об особенностях сервисного обслуживания газовых котлов, читайте здесь.

Начинают водоподготовку с механической очистки. Для этого используется стандартный механический или гравийный фильтр. На данном этапе вода очищается от твердых неорганических примесей. После того, как выполнена механическая очистка, выполняется умягчение воды. Другими словами, этот процесс еще называют ионным обменом.

Улучшение качества воды для паровых котлов

Обессоливание и умягчение воды Водоподготовка для паровых котельных невозможна без умягчения воды и очищения ее от солей. При ионном обмене ионы кальция в молекуле воды, которые, собственно, и образуют всем накипь, заменяются ионами натрия.

Такой метод используется в установках небольшого размера. Обмен одних ионов на другие производится на поверхности гранул фенольной или стирольной смолы, которой заполняется аппарат для ионообмена.

Схема процесса: гранула смолы на своей поверхности содержит ионы натрия. Когда через установку проходит вода, она омывает гранулы, и происходит замена кальция на натрий. При этом, количество солей в воде не изменяется, только ионов, благодаря которым она становится жесткой, там больше нет. После того, как смола теряет ионы натрия и не может больше выполнять ионозамещение, ее регенерируют. Для этого раствором поваренной соли промывают ионообменник: гранулы обогащаются ионами натрия, ионы магния и кальция вытесняются и попадают в дренаж с остатками соли. Установка снова готова к работе.

Электрические котлы Галан — именно та возможность существенно уменьшить затраты на устройство и обслуживание системы отопления.

Что такое пеллетные котлы, читайте здесь.

Если используются установка, в которой количество добавочной воды велико или требуется, по каким-либо причинам, получить воду для котла, отличающуюся низкой теплопроводностью, используется метод обратного осмоса. Этот метод является более дорогим, так как используются полупроницаемые мембраны. Установка обратного осмоса может иметь разную производительность. Если через мембраны необходимо пропустить большой объем жидкости, то предварительно вводятся реагенты для предотвращения зарастания мембран солями.

Термическая дегазация питательной воды

Термическая дегазация Питательная вода для паровых котлов также может подвергаться термической дегазации. Такая процедура производится после того, как выполнено обессоливание. Дегазация выполняется для того, чтобы снизить в воде количество углекислого газа и кислорода.

Технология построена на том, что когда температура питательной воды парового котла повышается, то снижается растворимость газов в жидкости. При кипении растворимость равняется нулю.

Дегазация проводится в установках, имеющих небольшую мощность. Диапазон рабочих температур таких установок 85-90 градусов. При нагреве воды, в виде выпара растворенные газы покидают воду. Поскольку данный диапазон температур не позволяет полностью освободить воду от газов, выполняют химическую обработку.

В результате дисперсного выделения или диффузии производится удаление газов.

Ввод реагентов

Ввод реагентовНа следующем этапе водоподготовки в воду вводится относительно небольшое количество реагентов, способных связывать вещества. Идеальное количество реагента ввести сложно, ведь до сих пор дозы рассчитываются «на глаз». Непрерывный контроль отсутствует. В итоге, происходит перерасход реагентов, а ведь стоимость их высока.

Кроме того, большое количество реагентов в воде приводит к повышению ее электропроводимости и происходит выпадение шлама. Такие явления способствуют к потерям энергии. Происходит вспенивание котловой воды, что может привести к возникновению гидравлических ударов и повреждению отопительной системы.

Чтобы этого не происходило, необходимо выполнять регулярные замеры параметров воды: ее электропроводности, значения рН, показателя жесткости, щелочности, содержание в воде кислорода. Измерение этих параметров проводят вручную. Только для измерения электропроводимости используется специальный электрод, который выполняет замеры беспрерывно в автоматическом режиме. В идеале, должны быть использованы реагенты без содержания неорганических солей. Тогда большинство проблем будет решаться автоматически.

Одним из ярких примеров такого оборудования являются электродные котлы отопления, которые позволяют быстро и качественно прогревать отапливаемое здание.

Подробнее о деаэраторе дв, читайте здесь.

После проведения всех этих мероприятий водоподготовка для паровой котельной считается полной. Но это разовое мероприятие. Чтобы качество воды в системе всегда оставалось на требуемом уровне, необходим постоянный аналитический контроль за системой. Следить за параметрами следует постоянно и, в случае необходимости, изменять их.

kotlotech.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..